Thermodynamic Modeling of Calcium Sulfate Hydrates in a CaSO4-H2SO4-H2O System from 273.15 to 473.15 K up to 5 m Sulfuric Acid

Leiting Shen, Hannu Sippola*, Xiaobin Li, Daniel Lindberg, Pekka Taskinen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

18 Downloads (Pure)

Abstract

To prevent scaling and to recycle aqueous solutions in industrial processes, the thermodynamic properties of the CaSO4-H2SO4-H2O system are studied by thermodynamic modeling with the Pitzer model. The published solubility data of calcium sulfate hydrates in sulfuric acid solutions were collected and reviewed critically. Then, the CaSO4-H2SO4-H2O system was modeled using the Pitzer activity coefficient approach from critically selected experimental data to obtain optimized parameters. The model reproduces the solubility data with good accuracy up to 5 m sulfuric acid at temperatures of 283.15-368.15, 283.15-473.15, and 298.15-398.15 K for gypsum (CaSO4·2H2O), anhydrite (CaSO4), and hemihydrate (CaSO4·0.5H2O), respectively. However, at temperatures above 398.15 K and sulfuric acid concentration above 0.5 mol/kg, the solubility of anhydrite predicted by our model deviates significantly from the literature data. Our model predicts that the solubility of anhydrite would first increase but then decrease in more concentrated sulfuric acid solutions, which is in disagreement with the experimental data showing constantly increasing solubilities as a function of increasing sulfuric acid concentration. This discrepancy has been discussed. The transformations of gypsum to anhydrite and hemihydrate were predicted in sulfuric acid solutions. With increasing H2SO4 concentration, the transformation temperatures of gypsum to anhydrite and hemihydrate will decrease. Thus, gypsum is stable at low temperatures in solutions of low H2SO4 concentrations and transforms to anhydrite at high temperatures and in concentrated H2SO4 solutions, while hemihydrate is always a metastable phase. Furthermore, the predicted results were compared with previous experimental studies to verify the accuracy of the model.

Original languageEnglish
Pages (from-to)2310–2324
JournalJournal of Chemical and Engineering Data
Volume65
Issue number5
DOIs
Publication statusPublished - 2020
MoE publication typeA1 Journal article-refereed

Fingerprint Dive into the research topics of 'Thermodynamic Modeling of Calcium Sulfate Hydrates in a CaSO<sub>4</sub>-H<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>O System from 273.15 to 473.15 K up to 5 m Sulfuric Acid'. Together they form a unique fingerprint.

  • Projects

    ITERAMS: Integrated mineral technologies for more sustainable raw material supply

    Dahl, O.

    31/05/201730/06/2021

    Project: EU: Framework programmes funding

    Cite this