Thermally pumped on-chip maser

George Thomas*, Azat Gubaydullin, Dmitry S. Golubev, Jukka P. Pekola

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

21 Downloads (Pure)

Abstract

We present a theoretical model of an on-chip three-level maser in a superconducting circuit based on a single artificial atom and pumped by a temperature gradient between thermal baths coupled to different interlevel transitions. We show that maser powers of the order of a few femtowatts, well exceeding the resolution of the sensitive bolometry, can be achieved with typical circuit parameters. We also demonstrate that population inversion in the artificial atom can be detected without measuring coherent radiation output of the maser. For that purpose, the system should operate as a three-terminal heat transport device. The hallmark of population inversion is the influx of heat power into the weakly coupled output terminal even though its temperature exceeds the temperatures of the two other terminals. The proposed method of on-chip conversion of heat into microwave radiation and control of energy-level populations by heating provide additional useful tools for circuit quantum electrodynamics experiments.

Original languageEnglish
Article number104503
Number of pages8
JournalPhysical Review B
Volume102
Issue number10
DOIs
Publication statusPublished - 8 Sep 2020
MoE publication typeA1 Journal article-refereed

Keywords

  • HEAT-CONDUCTION
  • QUANTUM
  • ATOM
  • CIRCUIT

Cite this