Thermal gas-phase etching of titanium nitride (TiN) by thionyl chloride (SOCl2)

Varun Sharma, Tom Blomberg, Suvi Haukka, Shaun Cembella, MIchael E. Givens, Marko Tuominen, Rajesh Odedra, Wes Graff, Mikko Ritala*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

19 Downloads (Pure)


In this work, thermal based gas-phase etching of titanium nitride (TiN) is demonstrated using thionyl chloride (SOCl2) as a novel etchant. A single etchant is utilised in a pulsed fashion to etch TiN. This type of etching technique may also be considered as a chemical gas-phase or dry etching. The removed TiN amount was measured by various techniques like spectroscopic ellipsometry (SE), weighing balance and in some cases X-ray reflectometry (XRR). Additionally, the post-etch surfaces were analysed with X-ray photoelectron spectroscopy (XPS) and bright field transmission electron microscopy (BF-TEM). The surface roughness and morphology of before and after etching TiN films were measured using atomic force microscopy (AFM). The etch per cycle (EPC) was calculated and is plotted as a function of SOCl2 pulse time, purge time after SOCl2 exposure, number of etch cycles and etch temperature (Tetch). An increase in EPC with an increase in SOCl2 pulse time as well as etch temperature was observed. SOCl2 is able to etch TiN starting from 270 °C with an EPC of about 0.03 Å to almost 1.2 Å at 370 °C. Arrhenius plot determined the activation energy (Ea) of about 25 kcal/mol for TiN etching by SOCl2. In addition, the etch selectivity between different substrates such as silicon dioxide (SiO2), silicon nitride (Si3N4) and aluminum oxide (Al2O3) was investigated on blanket as well as 3D structures. Moreover, thermodynamic calculations were performed for various possible etch reactions. Titanium from TiN is proposed to be etched in the form of either titanium trichloride (TiCl3) or titanium tetrachloride (TiCl4). Nitrogen from TiN films may form volatile by-products such as diatomic nitrogen (N2), nitrous oxide (N2O) and nitrogen dioxide (NO2).

Original languageEnglish
Article number148309
Number of pages8
JournalApplied Surface Science
Publication statusPublished - 28 Feb 2021
MoE publication typeA1 Journal article-refereed


  • dry etching
  • thermal etching
  • titanium nitride
  • thionyl chloride
  • selective etching

Fingerprint Dive into the research topics of 'Thermal gas-phase etching of titanium nitride (TiN) by thionyl chloride (SOCl<sub>2</sub>)'. Together they form a unique fingerprint.

Cite this