The Oxidation of Copper in Air at Temperatures up to 100 °C

Research output: Contribution to journalArticleScientificpeer-review

177 Downloads (Pure)


The aim of this study was to investigate the oxidation kinetics of copper at low temperatures (60 °C to 100 °C) in air by isothermal thermogravimetric analysis (TGA) and quartz crystal microbalance (QCM). The weight change in thermogravimetric tests showed periodic weight increase and decrease. In thermogravimetric tests the mass of the copper sample increased until the oxidation gradually slowed down and finally started to decrease due to cracking and spalling of the oxide formed on the surface. In QCM tests using electrodeposited copper film, the weight change was rapid at the beginning but slowed to a linear relationship after few minutes. Temperature and exposure time appeared to have a large effect on oxide film thickness and composition. With QCM, oxidation at 60–80 °C produced less than 40 nm films in 10 days. Oxidation at 90–100 °C produced 40 nm thick films in a day and over 100 nm films in a week. Although SEM-EDS analyses in TGA tests indicated that oxygen was adsorbed on the copper surface, neither XRD patterns nor Raman spectroscopy measurements showed any trace of Cu2O or CuO formation on the copper surface. Electrochemical reduction analysis of oxidized massive copper samples indicated that the oxide film is mostly Cu2O, and CuO develops only after several days at 90–100 °C.
Original languageEnglish
Pages (from-to)625-640
JournalCorrosion and Materials Degradation
Issue number4
Publication statusPublished - 25 Oct 2021
MoE publication typeA1 Journal article-refereed


Dive into the research topics of 'The Oxidation of Copper in Air at Temperatures up to 100 °C'. Together they form a unique fingerprint.

Cite this