The Impact of Glycoengineering on the Endoplasmic Reticulum Quality Control System in Yeasts

Mari A. Piirainen, Alexander D. Frey*

*Corresponding author for this work

Research output: Contribution to journalReview Articlepeer-review

1 Citation (Scopus)
91 Downloads (Pure)

Abstract

Yeasts are widely used and established production hosts for biopharmaceuticals. Despite of tremendous advances on creating human-type N-glycosylation, N-glycosylated biopharmaceuticals manufactured with yeasts are missing on the market. The N-linked glycans fulfill several purposes. They are essential for the properties of the final protein product for example modulating half-lives or interactions with cellular components. Still, while the protein is being formed in the endoplasmic reticulum, specific glycan intermediates play crucial roles in the folding of or disposal of proteins which failed to fold. Despite of this intricate interplay between glycan intermediates and the cellular machinery, many of the glycoengineering approaches are based on modifications of the N-glycan processing steps in the endoplasmic reticulum (ER). These N-glycans deviate from the canonical structures required for interactions with the lectins of the ER quality control system. In this review we provide a concise overview on the N-glycan biosynthesis, glycan-dependent protein folding and quality control systems and the wide array glycoengineering approaches. Furthermore, we discuss how the current glycoengineering approaches partially or fully by-pass glycan-dependent protein folding mechanisms or create structures that mimic the glycan epitope required for ER associated protein degradation.

Original languageEnglish
Article number910709
Pages (from-to)1-8
Number of pages8
JournalFrontiers in Molecular Biosciences
Volume9
DOIs
Publication statusPublished - 2 Jun 2022
MoE publication typeA2 Review article, Literature review, Systematic review

Keywords

  • endoplasmic reticulum associated protein degradation (ERAD)
  • endoplasmic reticulum quality control (ERQC)
  • glycoengineering
  • protein N-glycosylation
  • yeast

Fingerprint

Dive into the research topics of 'The Impact of Glycoengineering on the Endoplasmic Reticulum Quality Control System in Yeasts'. Together they form a unique fingerprint.

Cite this