Abstract
Tools to automate the summarization of nursing entries in electronic health records (EHR) have the potential to support healthcare professionals to obtain a rapid overview of a patient's situation when time is limited. This study explores a keyword-based text summarization method for the nursing text that is based on machine learning model explainability for text classification models. This study aims to extract keywords and phrases that provide an intuitive overview of the content in multiple nursing entries in EHRs written during individual patients' care episodes. The proposed keyword extraction method is used to generate keyword summaries from 40 patients' care episodes and its performance is compared to a baseline method based on word embeddings combined with the PageRank method. The two methods were assessed with manual evaluation by three domain experts. The results indicate that it is possible to generate representative keyword summaries from nursing entries in EHRs and our method outperformed the baseline method.
Original language | English |
---|---|
Title of host publication | MEDINFO 2021 |
Subtitle of host publication | One World, One Health - Global Partnership for Digital Innovation - Proceedings of the 18th World Congress on Medical and Health Informatics |
Editors | Paula Otero, Philip Scott, Susan Z. Martin, Elaine Huesing |
Publisher | IOS Press |
Pages | 632-636 |
Number of pages | 5 |
ISBN (Electronic) | 978-1-64368-264-8 |
DOIs | |
Publication status | Published - 6 Jun 2022 |
MoE publication type | A4 Conference publication |
Event | World Congress on Medical and Health Informatics - Virtual, Online Duration: 2 Oct 2021 → 4 Oct 2021 Conference number: 18 |
Publication series
Name | Studies in Health Technology and Informatics |
---|---|
Publisher | IOS Press |
Volume | 290 |
ISSN (Print) | 0926-9630 |
ISSN (Electronic) | 1879-8365 |
Conference
Conference | World Congress on Medical and Health Informatics |
---|---|
Abbreviated title | MEDINFO |
City | Virtual, Online |
Period | 02/10/2021 → 04/10/2021 |
Keywords
- Electronic Health Records
- Natural Language Processing
- Nursing