Techno-economic evaluation of a biorefinery to produce γ-valerolactone (GVL), 2-methyltetrahydrofuran (2-MTHF) and 5-hydroxymethylfurfural (5-HMF) from spruce

Rahul Bangalore Ashok, Pekka Oinas, Susanna Forssell

Research output: Contribution to journalArticleScientificpeer-review

3 Citations (Scopus)
101 Downloads (Pure)

Abstract

In this study, a biorefinery concept is presented to produce valuable platform chemicals such as γ-valerolactone (GVL), 2-methyltetrahydrofuran (2-MTHF) and 5-hydroxymethylfurfural (5-HMF) from lignocellulosic biomass via aqueous phase processing. Process simulation models are developed using Aspen Plus and a techno-economic assessment including cost estimation, energy integration, profitability study, sensitivity analysis and Monte Carlo simulation-based uncertainty analysis is carried out for evaluating the economic potential of the proposed process. The total investment for a plant with an annual production capacity of 35 kt of GVL, 17 kt of 2-MTHF and 5 kt of 5-HMF, is estimated as 257 M€. The minimum selling prices (MSPs) of GVL, 2-MTHF and 5-HMF are estimated to be 1.91 €/kg, 1.64 €/kg, and 1.93 €/kg, respectively. The profitability study revealed that the process generates an internal rate of return of 15.90%, making it viable and profitable. The sensitivity analysis indicated that the annual operational costs and fixed capital investment have the biggest influence on the minimum selling price of the products. Furthermore, based on the uncertainty analysis, the probability of loss is estimated as 17%. According to the market potential assessment, the most promising application of these platform chemicals is as biofuels and solvents.
Original languageEnglish
Pages (from-to)396-407
Number of pages12
JournalRenewable Energy
Volume190
Early online date1 Apr 2022
DOIs
Publication statusPublished - May 2022
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Techno-economic evaluation of a biorefinery to produce γ-valerolactone (GVL), 2-methyltetrahydrofuran (2-MTHF) and 5-hydroxymethylfurfural (5-HMF) from spruce'. Together they form a unique fingerprint.

Cite this