Projects per year
Abstract
This paper investigates Active Robot Learning strategies that take into account the effort of the user in an interactive learning scenario. Most research claims that Active Learning's sample efficiency can reduce training time and therefore the effort of the human teacher. We argue that the performance driven query selection of standard Active Learning can make the job of the human teacher difficult, resulting in a decrease in training quality due to slowdowns or increased error rates. We investigate this issue by proposing a learning strategy that aims to minimize the user's workload by taking into account the flow of the questions. We compare this strategy against a standard Active Learning strategy based on uncertainty sampling and a third strategy being an hybrid of the two. After studying in simulation the validity and the behavior of these approaches, we conducted a user study where 26 subjects interacted with a NAO robot embodying the presented strategies. We reports results from both the robot's performance and the human teacher's perspectives, observing how the hybrid strategy represents a good compromise between learning performance and user's experienced workload. Based on the results, we provide recommendations on the development of Active Robot Learning strategies going beyond robot's performance.
Original language | English |
---|---|
Title of host publication | HRI 2019 - 14th ACM/IEEE International Conference on Human-Robot Interaction |
Publisher | IEEE |
Pages | 335-343 |
Number of pages | 9 |
Volume | 2019-March |
ISBN (Electronic) | 978-1-5386-8555-6 |
DOIs | |
Publication status | Published - 22 Mar 2019 |
MoE publication type | A4 Article in a conference publication |
Event | ACM/IEEE International Conference on Human-Robot Interaction - Daegu, Korea, Republic of Duration: 11 Mar 2019 → 14 Mar 2019 Conference number: 14 http://humanrobotinteraction.org/2019/ |
Publication series
Name | ACM/IEEE International Conference on Human-Robot Interaction |
---|---|
Publisher | IEEE |
ISSN (Print) | 2167-2121 |
ISSN (Electronic) | 2167-2148 |
Conference
Conference | ACM/IEEE International Conference on Human-Robot Interaction |
---|---|
Abbreviated title | HRI |
Country/Territory | Korea, Republic of |
City | Daegu |
Period | 11/03/2019 → 14/03/2019 |
Internet address |
Keywords
- Active Learning
- Human-robot interaction
- Interactive machine learning
Fingerprint
Dive into the research topics of 'Teacher-Aware Active Robot Learning'. Together they form a unique fingerprint.Projects
- 2 Finished
-
ROSE: Robots and the Future of Welfare Services
Kyrki, V., Lundell, J., Racca, M., Brander, T. & Verdoja, F.
01/01/2018 → 30/04/2021
Project: Academy of Finland: Strategic research funding
-
COMPUTED: Computational User Interface Design
Feit, A., Oulasvirta, A., Todi, K., Dayama, N., Koch, J., Nancel, M., Brückner, L., Kim, S., Leiva, L., Liao, Y., Shiripour, M. & Nioche, A.
27/03/2015 → 31/03/2020
Project: EU: ERC grants