Projects per year
Abstract
Objective: Scalp cooling might increase the long-term potentiation (LTP)-like effect of transcranial direct current stimulation (tDCS) by reducing the threshold for after-effects according to metaplasticity and increasing electrical current density reaching the cortical neurons. We aimed to investigate whether priming scalp cooling potentiates the tDCS after-effect on motor cortex excitability. Methods: This study had a randomized, parallel-arms, sham-controlled, double-blinded design with an adequately powered sample of 105 healthy subjects. Corticomotor and intracortical excitability were assessed with motor evoked potentials (MEP) from transcranial magnetic stimulation (TMS) in short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) paradigms. Subjects were randomly allocated into six intervention groups, including anodal and cathodal tDCS (1-mA/20-min), scalp cooling, and sham. MEPs were recorded before, immediately, and 15 min after the interventions. Results: We did not observe changes in MEP amplitude from single-pulse TMS, SICI, and ICF with any intervention protocol. Conclusion: Anodal and cathodal tDCS did not have an LTP-like neuromodulatory effect on corticospinal and did not provide detectable GABAergic and glutamatergic neurotransmission changes, which were not influenced by priming scalp cooling. Significance: We provide strong evidence that tDCS (1-mA/20-min) does not alter corticomotor and intracortical excitability with or without priming scalp cooling.
Original language | English |
---|---|
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | Clinical Neurophysiology |
Volume | 168 |
DOIs | |
Publication status | Published - Dec 2024 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Gating
- Homeostatic metaplasticity
- Motor evoked potential
- Neuromodulation
- Scalp cooling
- tDCS
- TMS
Fingerprint
Dive into the research topics of 'tDCS and local scalp cooling do not change corticomotor and intracortical excitability in healthy humans'. Together they form a unique fingerprint.Projects
- 2 Active
-
MOTO/Souza: Moving together- high resolution brain mapping technology for the motor pathways
Souza, V. (Principal investigator)
01/09/2022 → 31/08/2025
Project: Academy of Finland: Other research funding
-
ConnectToBrain: Connecting to the Networks of the Human Brain
Ilmoniemi, R. (Principal investigator), Aydogan, D. B. (Project Member), Sinisalo, H. (Project Member), Li, L. (Project Member), Mäkinen, A. (Project Member), Pankka, H. (Project Member), Souza, V. (Project Member), Makkonen, M. (Project Member), Nieminen, A. (Project Member), Nissilä, I. (Project Member), Laine, M. (Project Member), Parvin, S. (Project Member), Rissanen, I. (Project Member), Kicic, D. (Project Member), Lioumis, P. (Project Member), Koistinen, L. (Project Member), Kahilakoski, O.-P. (Project Member), Raij, T. (Project Member), Soto de la Cruz, A. (Project Member), Tommila, T. (Project Member), Ylöstalo, T. (Project Member), Ukharova, E. (Project Member), Metsomaa, J. (Project Member), Vaalto, S. (Project Member), Granö, I. (Project Member), Koponen, M. (Project Member), Roine, T. (Project Member), Ahola, O. (Project Member), Lujala, A. (Project Member) & Hakulinen, K. (Project Member)
01/08/2019 → 31/08/2026
Project: EU: ERC grants