Projects per year
Abstract
Single-layer ceramic fuel cells consisting of Li0.15Ni0.45Zn0.4O2, Gd0.2Ce0.8O2 and a eutectic mixture of Li2CO3, Na2CO3 and K2CO3, were fabricated through extrusion-based 3D printing. The sintering temperature of the printed cells was varied from 700◦C to 1000◦C to identify the optimal thermal treatment to maximize the cell performance. It was found that the 3D printed single-layer cell sintered at 900◦C produced the highest power density (230 mW/cm2 ) at 550◦C, which is quite close to the performance (240 mW/cm2) of the single-layer cell fabricated through a conventional pressing method. The best printed cell still had high ohmic (0.46 Ω·cm2 ) and polarization losses (0.32 Ω·cm2 ) based on EIS measurements conducted in an open-circuit condition. The XRD spectra showed the characteristic peaks of the crystalline structures in the composite material. HR-TEM, SEM and EDS measurements revealed the morphological information of the composite materials and the distribution of the elements, respectively. The BET surface area of the single-layer cells was found to decrease from 2.93 m2/g to 0.18 m2/g as the sintering temperature increased from 700◦C to 1000◦C. The printed cell sintered at 900◦C had a BET surface area of 0.34 m2/g. The fabrication of single-layer ceramic cells through up-scalable 3D technology could facilitate the scaling up and commercialization of this promising fuel cell technology.
Original language | English |
---|---|
Article number | 2180 |
Number of pages | 14 |
Journal | Nanomaterials |
Volume | 11 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 2021 |
MoE publication type | A1 Journal article-refereed |
Keywords
- 3D printing
- Ceramic
- Fuel cell
- Mixed ionic and electronic conductivity
- Nanocomposite
- Reaction kinetics
- Single-layer
- Sintering
Fingerprint
Dive into the research topics of 'Systematic analysis on the effect of sintering temperature for optimized performance of li0.15ni0.45zn0.4o2-gd0.2ce0.8o2-li2co3-na2co3-k2co3 based 3d printed single-layer ceramic fuel cell'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Leading-edge next generation fuel cell devices
Asghar, I. (Principal investigator), Bilbey, B. (Project Member), Jouttijärvi, S. (Project Member) & Zarabi Golkhatmi, S. (Project Member)
01/09/2019 → 31/08/2022
Project: Academy of Finland: Other research funding