Switching dynamics in Al/InAs nanowire-based gate-controlled superconducting switch

Tosson Elalaily, Martin Berke, Ilari Lilja, Alexander Savin, Gergő Fülöp, Lőrinc Kupás, Thomas Kanne, Jesper Nygård, Péter Makk*, Pertti Hakonen*, Szabolcs Csonka

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)
16 Downloads (Pure)

Abstract

The observation of the gate-controlled supercurrent (GCS) effect in superconducting nanostructures increased the hopes for realizing a superconducting equivalent of semiconductor field-effect transistors. However, recent works attribute this effect to various leakage-based scenarios, giving rise to a debate on its origin. A proper understanding of the microscopic process underlying the GCS effect and the relevant time scales would be beneficial to evaluate the possible applications. In this work, we observed gate-induced two-level fluctuations between the superconducting state and normal state in Al/InAs nanowires (NWs). Noise correlation measurements show a strong correlation with leakage current fluctuations. The time-domain measurements show that these fluctuations have Poissonian statistics. Our detailed analysis of the leakage current measurements reveals that it is consistent with the stress-induced leakage current (SILC), in which inelastic tunneling with phonon generation is the predominant transport mechanism. Our findings shed light on the microscopic origin of the GCS effect and give deeper insight into the switching dynamics of the superconducting NW under the influence of the strong gate voltage.

Original languageEnglish
Article number9157
Pages (from-to)1-8
Number of pages8
JournalNature Communications
Volume15
Issue number1
DOIs
Publication statusPublished - Dec 2024
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Switching dynamics in Al/InAs nanowire-based gate-controlled superconducting switch'. Together they form a unique fingerprint.

Cite this