Projects per year
Abstract
The observation of the gate-controlled supercurrent (GCS) effect in superconducting nanostructures increased the hopes for realizing a superconducting equivalent of semiconductor field-effect transistors. However, recent works attribute this effect to various leakage-based scenarios, giving rise to a debate on its origin. A proper understanding of the microscopic process underlying the GCS effect and the relevant time scales would be beneficial to evaluate the possible applications. In this work, we observed gate-induced two-level fluctuations between the superconducting state and normal state in Al/InAs nanowires (NWs). Noise correlation measurements show a strong correlation with leakage current fluctuations. The time-domain measurements show that these fluctuations have Poissonian statistics. Our detailed analysis of the leakage current measurements reveals that it is consistent with the stress-induced leakage current (SILC), in which inelastic tunneling with phonon generation is the predominant transport mechanism. Our findings shed light on the microscopic origin of the GCS effect and give deeper insight into the switching dynamics of the superconducting NW under the influence of the strong gate voltage.
Original language | English |
---|---|
Article number | 9157 |
Pages (from-to) | 1-8 |
Number of pages | 8 |
Journal | Nature Communications |
Volume | 15 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2024 |
MoE publication type | A1 Journal article-refereed |
Fingerprint
Dive into the research topics of 'Switching dynamics in Al/InAs nanowire-based gate-controlled superconducting switch'. Together they form a unique fingerprint.-
EFT: Topologically induced frustration and quantum phenomena
Hakonen, P. (Principal investigator), Haque, M. (Project Member), Lilja, I. (Project Member), Sergeicheva, E. (Project Member) & Todoshchenko, I. (Project Member)
01/09/2021 → 31/08/2025
Project: Academy of Finland: Other research funding
-
-: European Microkelvin Platform
Hakonen, P. (Principal investigator)
01/01/2019 → 31/12/2023
Project: EU: Framework programmes funding
-
Finnish Centre of Excellence in Quantum Technology
Hakonen, P. (Principal investigator), Elo, T. (Project Member), Kumar, M. (Project Member) & Suresh, K. (Project Member)
01/01/2018 → 31/12/2020
Project: Academy of Finland: Other research funding
Equipment
-
-
OtaNano – Low Temperature Laboratory
Savin, A. (Manager) & Rissanen, A. (Other)
OtaNanoFacility/equipment: Facility