TY - JOUR
T1 - Survey on Optimization Methods for LEO-Satellite-Based Networks with Applications in Future Autonomous Transportation
AU - Çelikbilek, Kaan
AU - Saleem, Zainab
AU - Morales Ferre, Ruben
AU - Praks, Jaan
AU - Lohan, Elena Simona
N1 - Funding Information:
This work was supported by the Jane and Aatos Erko Foundation (JAES) and by the Teknologiateollisuus 100-year Foundation in the INCUBATE project. This work was also partly supported by the Academy of Finland, under the project ULTRA (328226, 328214).
Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/2/1
Y1 - 2022/2/1
N2 - Future autonomous transportation is one of the most demanding application areas in terms of connectivity, as it has to simultaneously meet stringent criteria that do not typically go hand in hand, such as high throughput, low latency, high coverage/availability, high positioning and sensing accuracies, high security and robustness to interferences, etc. In order to meet the future demands of challenging applications, such as applications relying on autonomous vehicles, terrestrial networks are no longer sufficient and are to be augmented in the future with satellite-based networks. Among the emerging satellite networks, Low Earth Orbit (LEO) networks are able to provide advantages over traditional Medium Earth Orbit (MEO) and Geo-Stationary Earth Orbit (GEO) networks in terms of signal latency, cost, and performance. Nevertheless, several challenges exist in LEO system design, which have not been fully addressed in the existing literature. In particular, the problem of LEO-system optimization of design parameters is a multi-dimensional problem with many aspects to be considered. This paper offers a comprehensive survey of the LEO-system design parameters, of the challenges in LEO system design process, and of the optimization methods for satellite communication, positioning, and sensing applications, as well as a summarizing discussion on the design considerations for LEO-based networks to support future autonomous transportation.
AB - Future autonomous transportation is one of the most demanding application areas in terms of connectivity, as it has to simultaneously meet stringent criteria that do not typically go hand in hand, such as high throughput, low latency, high coverage/availability, high positioning and sensing accuracies, high security and robustness to interferences, etc. In order to meet the future demands of challenging applications, such as applications relying on autonomous vehicles, terrestrial networks are no longer sufficient and are to be augmented in the future with satellite-based networks. Among the emerging satellite networks, Low Earth Orbit (LEO) networks are able to provide advantages over traditional Medium Earth Orbit (MEO) and Geo-Stationary Earth Orbit (GEO) networks in terms of signal latency, cost, and performance. Nevertheless, several challenges exist in LEO system design, which have not been fully addressed in the existing literature. In particular, the problem of LEO-system optimization of design parameters is a multi-dimensional problem with many aspects to be considered. This paper offers a comprehensive survey of the LEO-system design parameters, of the challenges in LEO system design process, and of the optimization methods for satellite communication, positioning, and sensing applications, as well as a summarizing discussion on the design considerations for LEO-based networks to support future autonomous transportation.
KW - Autonomous transportation
KW - Ground segment
KW - Low Earth Orbit (LEO) satellite networks
KW - Multi-target design
KW - Optimization criteria
KW - Space segment
KW - User segment
UR - http://www.scopus.com/inward/record.url?scp=85124367759&partnerID=8YFLogxK
U2 - 10.3390/s22041421
DO - 10.3390/s22041421
M3 - Article
AN - SCOPUS:85124367759
SN - 1424-8220
VL - 22
JO - Sensors
JF - Sensors
IS - 4
M1 - 1421
ER -