Suppression of 1/f noise in graphene due to anisotropic mobility fluctuations induced by impurity motion

Masahiro Kamada, Weijun Zeng, Antti Laitinen, Jayanta Sarkar, Sheng Shiuan Yeh, Kirsi Tappura, Heikki Seppä, Pertti Hakonen*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)
53 Downloads (Pure)

Abstract

Low frequency resistance variations due to mobility fluctuations is one of the key factors of 1/f noise in metallic conductors. According to theory, such noise in a two-dimensional (2D) device can be suppressed to zero at small magnetic fields, implying important technological benefits for low noise 2D devices. In this work, we provide evidence of anisotropic mobility fluctuations by demonstrating a strong field-induced suppression of noise in a high-mobility graphene Corbino disk, even though the device displays only a tiny amount of 1/f noise inherently. The suppression of the 1/f noise depends on charge density, showing less non-uniform mobility fluctuations away from the Dirac point with charge puddles. We model our results using an approach based on impurity clustering dynamics and find our results consistent with the 1/f noise induced by scattering of carriers on mobile impurities forming clusters.

Original languageEnglish
Article number207
Pages (from-to)1-6
Number of pages6
JournalCommunications Physics
Volume6
Issue number1
DOIs
Publication statusPublished - Dec 2023
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Suppression of 1/f noise in graphene due to anisotropic mobility fluctuations induced by impurity motion'. Together they form a unique fingerprint.

Cite this