Projects per year
Abstract
Superhydrophobic surfaces repel water and, in some cases, other liquids as well. The repellency is caused by topographical features at the nano-/microscale and low surface energy. Blood is a challenging liquid to repel due to its high propensity for activation of intrinsic hemostatic mechanisms, induction of coagulation, and platelet activation upon contact with foreign surfaces. Imbalanced activation of coagulation drives thrombogenesis or formation of blood clots that can occlude the blood flow either on-site or further downstream as emboli, exposing tissues to ischemia and infarction. Blood-repellent superhydrophobic surfaces aim toward reducing the thrombogenicity of surfaces of blood-contacting devices and implants. Several mechanisms that lead to blood repellency are proposed, focusing mainly on platelet antiadhesion. Structured surfaces can: (i) reduce the effective area exposed to platelets, (ii) reduce the adhesion area available to individual platelets, (iii) cause hydrodynamic effects that reduce platelet adhesion, and (iv) reduce or alter protein adsorption in a way that is not conducive to thrombus formation. These mechanisms benefit from the superhydrophobic Cassie state, in which a thin layer of air is trapped between the solid surface and the liquid. The connections between water- and blood repellency are discussed and several recent examples of blood-repellent superhydrophobic surfaces are highlighted.
Original language | English |
---|---|
Article number | 1705104 |
Number of pages | 10 |
Journal | Advanced Materials |
Volume | 30 |
Issue number | 24 |
Early online date | 21 Feb 2018 |
DOIs | |
Publication status | Published - Jun 2018 |
MoE publication type | A1 Journal article-refereed |
Keywords
- antithrombogenic
- blood-compatible
- blood-repellent
- nanostructures
- superhydrophobic
Fingerprint
Dive into the research topics of 'Superhydrophobic blood-repellent surfaces'. Together they form a unique fingerprint.Projects
- 1 Finished
-
SuperRepel: Superslippery Liquid-Repellent Surfaces
Ras, R., Yu, C., Huhtamäki, T., Junaid, M., Lepikko, S., Liu, K., Vuckovac, M. & Hokkanen, M.
01/06/2017 → 31/05/2022
Project: EU: ERC grants