Study of Ni, Pt, and Ru Catalysts on Wood-based Activated Carbon Supports and their Activity in Furfural Conversion to 2-Methylfuran

Research output: Contribution to journalArticleScientificpeer-review

Researchers

Research units

  • University of Oulu
  • Kokkola University Consortium Chydenius

Abstract

Bio-based chemicals can be produced from furfural through hydrotreatment. In this study, 2-methylfuran (MF), a potential biofuel component, was produced with Pt, Ru, and Ni catalysts supported on wood-based activated carbons. The catalytic hydrotreatment experiments were conducted in a batch reactor at 210-240°C with 2-propanol as solvent and 40bar H2 pressure. Two types of activated carbon supports were prepared by carbonization and activation of lignocellulosic biomass (forest-residue-based birch and spruce from Finland). Both types of activated carbons were suitable as catalyst supports, giving up to 100% furfural conversions. The most important factors affecting the MF yield were the metal dispersion and particle size as well as reaction temperature. The highest observed MF yields were achieved with the noble metal catalysts with the highest dispersions at 240°C after 120min reaction time: 3wt% Pt on spruce (MF yield of 50%) and 3wt% Ru on birch (MF yield of 49%). Nickel catalysts were less active most likely owing to lower dispersions and incomplete metal reduction. Interesting results were obtained also with varying the metal loadings: the lower Pt loading (1.5wt%) achieved almost the same MF yield as the 3wt% catalysts, which can enable the production of MF with high yields and reduced catalyst costs. Based on this study, biomass-based renewable activated carbons can be used as catalyst supports in furfural hydrotreatment with high conversions.

Details

Original languageEnglish
Pages (from-to)3269-3283
JournalChemCatChem
Volume10
Issue number15
Publication statusPublished - 2018
MoE publication typeA1 Journal article-refereed

    Research areas

  • 2-methylfuran, Activated carbon, Biofuel, Biomass, Furfural

Download statistics

No data available

ID: 25678189