Structure-dependent performance of single-walled carbon nanotube films in transparent and conductive applications

Eldar M. Khabushev, Dmitry V. Krasnikov, Julia V. Kolodiazhnaia, Anton V. Bubis, Albert G. Nasibulin*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

We investigate a complex relationship between structural parameters of single-walled carbon nanotubes (namely, mean length, diameter, and defectiveness) and optoelectrical properties (equivalent sheet resistance) of thin films composed of the nanotubes. We obtained a systematic dataset describing the influence of CO2 concentration and growth temperature. On the basis of the experimental results, we prove the high Raman peak ratio (IG/ID), length, and diameter of the nanotubes to decrease the equivalent sheet resistance of the nanotube-based film. The approach employed highlights the change in the nanotube growth mechanism at the temperature coinciding with the phase transition between α-Fe and γ-Fe catalyst phases. We believe this work to be of high interest for researchers working not only in the field of transparent and conductive films based on nanocarbons, but also for those who reveals the fundamentals of the nanotube growth mechanism.

Original languageEnglish
Pages (from-to)712-717
Number of pages6
JournalCarbon
Volume161
DOIs
Publication statusPublished - May 2020
MoE publication typeA1 Journal article-refereed

Fingerprint Dive into the research topics of 'Structure-dependent performance of single-walled carbon nanotube films in transparent and conductive applications'. Together they form a unique fingerprint.

  • Cite this