TY - JOUR
T1 - Star-Shaped Diketopyrrolopyrrole–Zinc Porphyrin that Delivers 900 nm Emission in Light-Emitting Electrochemical Cells
AU - Mone, Mariza
AU - Tang, Shi
AU - Murto, Petri
AU - Abdulahi, Birhan
AU - Larsen, Christian
AU - Wang, Jia
AU - Mammo, Wendimagegn
AU - Edman, Ludvig
AU - Wang, Ergang
PY - 2019/12/10
Y1 - 2019/12/10
N2 - The development and application of a deep near-infrared (NIR) emitting star-shaped diketopyrrolopyrrole–Zn-porphyrin compound, ZnP(TDPP)4, is reported. The structure, conjugation, and planarity of the porphyrin compound were carefully tuned by molecular design, which resulted in a low-energy photoluminescence peak at 872 nm. The ZnP(TDPP)4 compound was employed as the emissive guest in light-emitting electrochemical cells (LECs), which also comprised the conjugated polymer poly[1,3-bis(2-ethylhexyl)-5-(5-(6-methyl-4,8-bis(5-(tributylsilyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophen-2-yl)thiophen-2-yl)-7-(5-methylthiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c′]dithiophene-4,8-dione] (PBDTSi-BDD) as the majority host, an ionic liquid as the electrolyte, and two air-stabile electrodes. These systematically optimized host–guest LECs featured a peak electroluminescence at 900 nm, which was delivered at a significant radiance of 36 μW/cm2 and at a low drive voltage of 3.8 V. It is notable that this is the most redshifted NIR emission attained from an LEC device to date, and as such, this work introduces Zn porphyrins as a sustainable and tunable option for emerging emissive NIR applications.
AB - The development and application of a deep near-infrared (NIR) emitting star-shaped diketopyrrolopyrrole–Zn-porphyrin compound, ZnP(TDPP)4, is reported. The structure, conjugation, and planarity of the porphyrin compound were carefully tuned by molecular design, which resulted in a low-energy photoluminescence peak at 872 nm. The ZnP(TDPP)4 compound was employed as the emissive guest in light-emitting electrochemical cells (LECs), which also comprised the conjugated polymer poly[1,3-bis(2-ethylhexyl)-5-(5-(6-methyl-4,8-bis(5-(tributylsilyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophen-2-yl)thiophen-2-yl)-7-(5-methylthiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c′]dithiophene-4,8-dione] (PBDTSi-BDD) as the majority host, an ionic liquid as the electrolyte, and two air-stabile electrodes. These systematically optimized host–guest LECs featured a peak electroluminescence at 900 nm, which was delivered at a significant radiance of 36 μW/cm2 and at a low drive voltage of 3.8 V. It is notable that this is the most redshifted NIR emission attained from an LEC device to date, and as such, this work introduces Zn porphyrins as a sustainable and tunable option for emerging emissive NIR applications.
UR - http://dx.doi.org/10.1021/acs.chemmater.9b03312
U2 - 10.1021/acs.chemmater.9b03312
DO - 10.1021/acs.chemmater.9b03312
M3 - Article
SN - 0897-4756
VL - 31
SP - 9721
EP - 9728
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 23
ER -