Spontaneous creation and annihilation dynamics of magnetic skyrmions at elevated temperature

Junlin Wang, Mara Strungaru, Sergiu Ruta, Andrea Meo, Yifan Zhou, András Deák, László Szunyogh, Paul Iulian Gavriloaea, Roberto Moreno, Oksana Chubykalo-Fesenko, Jing Wu, Yongbing Xu, Richard F.L. Evans, Roy W. Chantrell

Research output: Contribution to journalArticleScientificpeer-review

16 Downloads (Pure)


Skyrmions are topologically protected nanoscale magnetic structures with a wide range of potential applications. Here we determine the life cycle of skyrmions from their creation to their intrinsic dynamics and thermal stability to their eventual thermodynamic demise. Using atomistic simulations of Ir/Co/Pt, parameterized from ab initio calculations, we demonstrate the thermal phase transition to a skyrmion state under application of a perpendicular magnetic field. The created skyrmions exhibit Brownian particlelike dynamics driven by the underlying thermal spin fluctuations. At an elevated temperature window well below the Curie temperature, the skyrmions are metastable and can collapse to a uniform magnetic state. With application of an external magnetic field, the intrinsic local thermal spin fluctuations at this elevated temperature window are sufficiently large to allow the spontaneous formation of new skyrmions in thermodynamic equilibrium analogous to a spontaneous skyrmion gas. Such a system could be used to implement a skyrmion-based true random number generator.

Original languageEnglish
Article number054420
Number of pages6
JournalPhysical Review B
Issue number5
Publication statusPublished - 13 Aug 2021
MoE publication typeA1 Journal article-refereed


Dive into the research topics of 'Spontaneous creation and annihilation dynamics of magnetic skyrmions at elevated temperature'. Together they form a unique fingerprint.

Cite this