Spatially confined lignin nanospheres for biocatalytic ester synthesis in aqueous media

Mika Henrikki Sipponen*, Muhammad Farooq, Jari Koivisto, Alessandro Pellis, Jani Seitsonen, Monika Österberg

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

38 Citations (Scopus)
283 Downloads (Pure)

Abstract

Dehydration reactions proceed readily in water-filled biological cells. Development of biocatalysts that mimic such compartmentalized reactions has been cumbersome due to the lack of low-cost nanomaterials and associated technologies. Here we show that cationic lignin nanospheres function as activating anchors for hydrolases, and enable aqueous ester synthesis by forming spatially confined biocatalysts upon self-assembly and drying-driven aggregation in calcium alginate hydrogel. Spatially confined microbial cutinase and lipase retain 97% and 70% of their respective synthetic activities when the volume ratio of water to hexane increases from 1:1 to 9:1 in the reaction medium. The activity retention of industrially most frequently used acrylic resin-immobilized Candida antarctica lipase B is only 51% under similar test conditions. Overall, our findings enable fabrication of robust renewable biocatalysts for aqueous ester synthesis, and provide insight into the compartmentalization of diverse heterogeneous catalysts.

Original languageEnglish
Article number2300
Number of pages7
JournalNature Communications
Volume9
Issue number1
DOIs
Publication statusPublished - 1 Dec 2018
MoE publication typeA1 Journal article-refereed

Fingerprint Dive into the research topics of 'Spatially confined lignin nanospheres for biocatalytic ester synthesis in aqueous media'. Together they form a unique fingerprint.

Cite this