Abstract
Dehydration reactions proceed readily in water-filled biological cells. Development of biocatalysts that mimic such compartmentalized reactions has been cumbersome due to the lack of low-cost nanomaterials and associated technologies. Here we show that cationic lignin nanospheres function as activating anchors for hydrolases, and enable aqueous ester synthesis by forming spatially confined biocatalysts upon self-assembly and drying-driven aggregation in calcium alginate hydrogel. Spatially confined microbial cutinase and lipase retain 97% and 70% of their respective synthetic activities when the volume ratio of water to hexane increases from 1:1 to 9:1 in the reaction medium. The activity retention of industrially most frequently used acrylic resin-immobilized Candida antarctica lipase B is only 51% under similar test conditions. Overall, our findings enable fabrication of robust renewable biocatalysts for aqueous ester synthesis, and provide insight into the compartmentalization of diverse heterogeneous catalysts.
Original language | English |
---|---|
Article number | 2300 |
Number of pages | 7 |
Journal | Nature Communications |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Dec 2018 |
MoE publication type | A1 Journal article-refereed |
Fingerprint
Dive into the research topics of 'Spatially confined lignin nanospheres for biocatalytic ester synthesis in aqueous media'. Together they form a unique fingerprint.Equipment
-
Bioeconomy Research Infrastructure
Jukka Seppälä (Manager)
School of Chemical EngineeringFacility/equipment: Facility
-
-