Source/Drain Materials for Ge nMOS Devices: Phosphorus Activation in Epitaxial Si, Ge, Ge1-xSnx and SiyGe1-x-ySnx

Anurag Vohra, Ilja Makkonen, Geoffrey Pourtois, Jonatan Slotte, Clement Porret, Erik Rosseel, Afrina Khanam, Matteo Tirrito, Bastien Douhard, Roger Loo, Wilfried Vandervorst

Research output: Contribution to journalArticleScientificpeer-review

10 Citations (Scopus)
127 Downloads (Pure)

Abstract

This paper benchmarks various epitaxial growth schemes based on n-type group-IV materials as viable source/drain candidates for Ge nMOS devices. Si:P grown at low temperature on Ge, gives an active carrier concentration as high as 3.5 × 1020 cm−3 and a contact resistivity down to 7.5 × 10−9 Ω.cm2. However, Si:P growth is highly defective due to large lattice mismatch between Si and Ge. Within the material stacks assessed, one option for Ge nMOS source/drain stressors would be to stack Si:P, deposited at contact level, on top of a selectively grown n-Si y Ge1−x−y Sn x at source/drain level, in line with the concept of Si passivation of n-Ge surfaces to achieve low contact resistivities as reported in literature (Martens et al. 2011 Appl. Phys. Lett., 98, 013 504). The saturation in active carrier concentration with increasing P (or As)-doping is the major bottleneck in achieving low contact resistivities for as-grown Ge or Si y Ge1−x−y Sn x . We focus on understanding various dopant deactivation mechanisms in P-doped Ge and Ge1−x Sn x alloys. First principles simulation results suggest that P deactivation in Ge and Ge1−x Sn x can be explained both by P-clustering and donor-vacancy complexes. Positron annihilation spectroscopy analysis, suggests that dopant deactivation in P-doped Ge and Ge1−x Sn x is primarily due to the formation of P n -V and Sn m P n -V clusters.
Original languageEnglish
Article number044010
Pages (from-to)1-13
Number of pages13
JournalECS Journal of Solid State Science and Technology
Volume9
Issue number4
DOIs
Publication statusPublished - 7 May 2020
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Source/Drain Materials for Ge nMOS Devices: Phosphorus Activation in Epitaxial Si, Ge, Ge1-xSnx and SiyGe1-x-ySnx'. Together they form a unique fingerprint.

Cite this