Projects per year
Abstract
In the present study, six organic solvents that are commonly used in the paint industry (1-butanol, 1-methoxy-2-propanol, 2-propanol, butyl acetate, propylene glycol monomethyl ether acetate, and diethylene glycol monobutyl
ether) were tested for their ability to dissolve two distinct lignins: an industrial kraft lignin (KL) and a pilotscale organosolv lignin (OL). Among the solvents investigated, 1-methoxy-2 propanol (Dowanol™ PM, DPM) and diethylene glycol monobutyl ether (Butyl Carbitol™, BC) demonstrated high degrees of solubility (> 98 wt. % at 25 °C) that were comparable to the commonly used lignin solvent, dimethyl sulfoxide (DMSO). Lignin coatings were prepared by spray-coating the new lignin-solvent solutions on iron-phosphated steel, prior to investigation
of their subsequent morphological and electrochemical performance characteristics. It was found that KL/DPM coatings demonstrate suitable short-term (1 h, 5% NaCl) anticorrosive characteristics with an increased charge transfer resistance (Rct) compared to the bare steel (1.5×105 Ω. cm2 cf. 1.9×103 Ω. cm2). However, a prolonged (24 h) immersion resulted in a decrease in Rct values (1.1×104 Ω. cm2), which may indicate that the lignin coating alone is unable to provide long-term protection under these aggressive conditions.
ether) were tested for their ability to dissolve two distinct lignins: an industrial kraft lignin (KL) and a pilotscale organosolv lignin (OL). Among the solvents investigated, 1-methoxy-2 propanol (Dowanol™ PM, DPM) and diethylene glycol monobutyl ether (Butyl Carbitol™, BC) demonstrated high degrees of solubility (> 98 wt. % at 25 °C) that were comparable to the commonly used lignin solvent, dimethyl sulfoxide (DMSO). Lignin coatings were prepared by spray-coating the new lignin-solvent solutions on iron-phosphated steel, prior to investigation
of their subsequent morphological and electrochemical performance characteristics. It was found that KL/DPM coatings demonstrate suitable short-term (1 h, 5% NaCl) anticorrosive characteristics with an increased charge transfer resistance (Rct) compared to the bare steel (1.5×105 Ω. cm2 cf. 1.9×103 Ω. cm2). However, a prolonged (24 h) immersion resulted in a decrease in Rct values (1.1×104 Ω. cm2), which may indicate that the lignin coating alone is unable to provide long-term protection under these aggressive conditions.
Original language | English |
---|---|
Article number | 112310 |
Number of pages | 11 |
Journal | Industrial Crops and Products |
Volume | 148 |
DOIs | |
Publication status | Published - Jun 2020 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Lignin
- Solubility
- Organic solvent
- Sustainable coatings
- Corrosion protection
Fingerprint
Dive into the research topics of 'Solubility study of lignin in industrial organic solvents and investigation of electrochemical properties of spray-coated solutions'. Together they form a unique fingerprint.Projects
- 1 Finished
-
NoWaste
Yliniemi, K., Lundström, M., Hannula, P., Barranco Asensio, V., Wilson, B., Halli, P., Karppinen, A., Revitzer, H. & Wang, Z.
01/09/2016 → 31/12/2020
Project: Academy of Finland: Other research funding
Equipment
-
Raw Materials Research Infrastructure
Maarit Karppinen (Manager)
School of Chemical EngineeringFacility/equipment: Facility
Activities
- 1 Participant of a conference, workshop, session, tutorial or event
-
Annual Meeting of the International Society of Electrochemistry
Ben Wilson (Participant), Arman Dastpak (Member), Kirsi Yliniemi (Member), Sarah Höhn (Member), Mariana Monteiro (Member), Sannakaisa Virtanen (Member) & Mari Lundström (Member)
8 Aug 2019Activity: Participating in or organising an event types › Participant of a conference, workshop, session, tutorial or event