Small satellite attitude determination during plasma brake deorbiting experiment

Osama Khurshid*, Jorma Selkäinaho, Halil Ersin Soken, Esa Kallio, Arto Visala

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

11 Citations (Scopus)

Abstract

This paper presents a study on attitude estimation during the Plasma Brake Experiment (PBE) onboard a small satellite. The PBE demands that the satellite be spun at a very high angular velocity, up to 200degs, to deploy the tether using centrifugal force. The spin controller, based on purely magnetic actuation, and the PBE demands accurate attitude estimation for the successful execution of the experiment. The biases are important to be estimated onboard small satellites due to the closely integrated systems and relatively higher interference experienced by the sensors. However, bias estimation is even more important for PBE due to the presence of a high voltage unit, onboard the satellite, that is used to charge the tether and can be the source of interference. The attitude and the biases, when estimated simultaneously, results in an augmented state vector that poses a challenge to the proper tuning of process noise. The adaptation of process noise covariance has, therefore, been studied and analysed for the challenging PBE. It has been observed that adapting the process noise covariance improves the estimation accuracy during the spin-up phase. Therefore, it is very important to use adaptive process noise covariance estimation.

Original languageEnglish
Pages (from-to)52-58
Number of pages7
JournalActa astronautica
Volume129
DOIs
Publication statusPublished - 1 Dec 2016
MoE publication typeA1 Journal article-refereed

Keywords

  • Adaptive estimation
  • Deorbiting
  • Plasma brake
  • UKF

Fingerprint

Dive into the research topics of 'Small satellite attitude determination during plasma brake deorbiting experiment'. Together they form a unique fingerprint.

Cite this