Skyrmions in antiferromagnets: Thermal stability and the effect of external field and impurities

Maria N. Potkina, Igor S. Lobanov, Hannes Jonsson*, Valery M. Uzdin

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

24 Citations (Scopus)
158 Downloads (Pure)

Abstract

Calculations of skyrmions in antiferromagnets (AFMs) are presented, and their properties compared with skyrmions in corresponding ferromagnets (FMs). The rates of skyrmion collapse and escape through the boundary of a track, as well as the binding to and collapse at a non-magnetic impurity, are calculated as a function of an applied magnetic field. The activation energy for skyrmion annihilation is the same in AFMs and corresponding FMs in the absence of an applied magnetic field. The pre-exponential factor in the Arrhenius rate law is, however, different because skyrmion dynamics is different in the two systems. An applied magnetic field has opposite effects on skyrmions in the two types of materials. In AFMs, the rate of collapse of skyrmions as well as the rate of escape through the edge of a magnetic strip decreases slightly with increasing field, while these rates increase strongly for a skyrmion in the corresponding FMs when the field is directed antiparallel to the magnetization in the center of the skyrmion. A non-magnetic impurity is less likely to trap a skyrmion in AFMs, especially in the presence of a magnetic field. This, together with the established fact that a spin polarized current moves skyrmions in AFMs in the direction of the current, while in FMs skyrmions move at an angle to the current, demonstrates that skyrmions in AFMs have several advantageous properties over skyrmions in FMs for memory and spintronic devices.

Original languageEnglish
Article number213906
Number of pages9
JournalJournal of Applied Physics
Volume127
Issue number21
DOIs
Publication statusPublished - 7 Jun 2020
MoE publication typeA1 Journal article-refereed

Keywords

  • TEMPERATURE MAGNETIC SKYRMIONS
  • ROOM-TEMPERATURE
  • PHASE-TRANSITIONS

Fingerprint

Dive into the research topics of 'Skyrmions in antiferromagnets: Thermal stability and the effect of external field and impurities'. Together they form a unique fingerprint.

Cite this