TY - GEN
T1 - Singular partial differential operators and pseudo-differential boundary conditions in invisibility cloaking
AU - Lassas, Matti
AU - Zhou, T.
PY - 2014
Y1 - 2014
N2 - Transformation optics constructions have allowed the design of cloaking devices that steer electromagnetic, acoustic and quantum parameters waves around a region without penetrating it, so that this region is hidden from external observations. The material parameters used to describe these devices are anisotropic, and singular at the interface between the cloaked and uncloaked regions, making physical realization a challenge. These singular material parameters correspond to singular coefficient functions in the partial differential equations modeling these constructions and the presence of these singularities causes various mathematical problems and physical effects on the interface surface. In this paper, we give a review on mathematical theory of cloaking. Moreover, we consider the two-dimensional cloaking, that is, cylindrical cloaking, for Maxwell's equations. For this case, we present results that generalizes earlier analogous results for the two-dimensional cloaking for the scalar equations. In particular, we consider nonsingular approximate invisibility cloaks based on the truncation of the singular transformations. Using such truncation we analyze the limit when the approximate cloaking approaches the ideal cloaking. We show that a non-local pseudo-differential boundary condition appears on the inner cloak interface. This effect in the two-dimensional (or cylindrical) invisibility cloaks, which seems to be caused by the infinite phase velocity near the interface between the cloaked and uncloaked regions, is very different to the behavior of the solutions in the three-dimensional cloaks.
AB - Transformation optics constructions have allowed the design of cloaking devices that steer electromagnetic, acoustic and quantum parameters waves around a region without penetrating it, so that this region is hidden from external observations. The material parameters used to describe these devices are anisotropic, and singular at the interface between the cloaked and uncloaked regions, making physical realization a challenge. These singular material parameters correspond to singular coefficient functions in the partial differential equations modeling these constructions and the presence of these singularities causes various mathematical problems and physical effects on the interface surface. In this paper, we give a review on mathematical theory of cloaking. Moreover, we consider the two-dimensional cloaking, that is, cylindrical cloaking, for Maxwell's equations. For this case, we present results that generalizes earlier analogous results for the two-dimensional cloaking for the scalar equations. In particular, we consider nonsingular approximate invisibility cloaks based on the truncation of the singular transformations. Using such truncation we analyze the limit when the approximate cloaking approaches the ideal cloaking. We show that a non-local pseudo-differential boundary condition appears on the inner cloak interface. This effect in the two-dimensional (or cylindrical) invisibility cloaks, which seems to be caused by the infinite phase velocity near the interface between the cloaked and uncloaked regions, is very different to the behavior of the solutions in the three-dimensional cloaks.
KW - Invisibility cloaking
KW - Pseudodifferential boundary conditions
UR - http://www.scopus.com/inward/record.url?scp=84961287739&partnerID=8YFLogxK
M3 - Conference article in proceedings
AN - SCOPUS:84961287739
SN - 9783319025490
VL - 63
T3 - Trends in Mathematics
SP - 263
EP - 268
BT - Fourier Analysis - Pseudo-differential Operators, Time-Frequency Analysis and Partial Differential Equations
PB - Springer
T2 - International Conference on Fourier Analysis and Pseudo-Differential Operators
Y2 - 25 June 2012 through 29 June 2012
ER -