Shear strength and shear stiffness analysis of compacted Wyoming-type bentonite

X. Pintado*, S. Kumpulainen, E. Romero, A. Lloret, R. C. Weber, A. Ferrari, M. V. Villar, A. Abed, W. Solowski, Ville Heino

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)

Abstract

Wyoming-type bentonite is one of the materials to be used as part of the Engineered Barrier System (EBS) in deep geological disposal facilities for the safe disposal of spent nuclear fuel. In the KBS-3 type repository, the canisters containing the spent fuel assemblies are surrounded by bentonite buffer. Therefore, it is necessary to understand the bentonite behaviour in shearing conditions for the long-term performance assessment of the canisters. Bentonite shearing could arise, for example, due to potential post-glacial earthquakes. The deviatoric stress at failure and the shear modulus of a compacted Wyoming-type bentonite were measured using different shearing tests. Tests were carried out on unsaturated samples at three laboratories. The shearing tests on unsaturated samples were unconfined and triaxial compression tests, hollow cylinder tests and simple shear tests. Unconfined and triaxial compression tests were also carried out on saturated samples. The failure was quite ductile when tests were carried out with confining pressure. The samples were compacted at different dry densities and degrees of saturation and tested at different confining pressures and strain levels to study their influence on the shear properties. Shear strength and shear modulus were studied based on models that consider the double porosity structure of the bentonites. Previously published triaxial tests and resonant column test results were also included in this study. In combination with these models, several alternatives for the definition of the constitutive stress were checked for the case of bentonite. A novel, approach, involving the results of mercury intrusion porosimetry in estimating the constitutive stress, was introduced. The shear strength calculated by the models showed a good agreement with the measured values. In some cases, unrealistic large tensile stresses were predicted. Furthermore, the models can assess the tendency of the shear modulus as a function of the shear strain, degree of saturation and dry density.

Original languageEnglish
Article number100468
Number of pages27
JournalGeomechanics for Energy and the Environment
Volume34
Early online date21 Apr 2023
DOIs
Publication statusPublished - Jun 2023
MoE publication typeA1 Journal article-refereed

Keywords

  • Bishop's stress
  • Constitutive stress
  • Hollow cylinder test
  • Mercury intrusion porosimetry
  • Shear strength
  • Simple shear test
  • Suction
  • Triaxial test

Fingerprint

Dive into the research topics of 'Shear strength and shear stiffness analysis of compacted Wyoming-type bentonite'. Together they form a unique fingerprint.

Cite this