Sensor-level MEG combined with machine learning yields robust classification of mild traumatic brain injury patients

Juho Aaltonen*, Verna Heikkinen, Hanna Kaltiainen, Riitta Salmelin, Hanna Renvall

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)
9 Downloads (Pure)

Abstract

Objective: Diagnosis of mild traumatic brain injury (mTBI) is challenging despite its high incidence, due to the unspecificity and variety of symptoms and the frequent lack of structural imaging findings. There is a need for reliable and simple-to-use diagnostic tools that would be feasible across sites and patient populations. Methods: We evaluated linear machine learning (ML) methods’ ability to separate mTBI patients from healthy controls, based on their sensor-level magnetoencephalographic (MEG) power spectra in the subacute phase (<2 months) after a head trauma. We recorded resting-state MEG data from 25 patients and 25 age-sex matched controls and utilized a previously collected data set of 20 patients and 20 controls from a different site. The data sets were analyzed separately with three ML methods. Results: The median classification accuracies varied between 80 and 95%, without significant differences between the applied ML methods or data sets. The classification accuracies were significantly higher with ML than with traditional sensor-level MEG analysis based on detecting pathological low-frequency activity. Conclusions: Easily applicable linear ML methods provide reliable and replicable classification of mTBI patients using sensor-level MEG data. Significance: Power spectral estimates combined with ML can classify mTBI patients with high accuracy and have high promise for clinical use.

Original languageEnglish
Pages (from-to)79-87
Number of pages9
JournalClinical Neurophysiology
Volume153
DOIs
Publication statusPublished - Sept 2023
MoE publication typeA1 Journal article-refereed

Keywords

  • Machine learning
  • Magnetoencephalography
  • Mild traumatic brain injury
  • Resting-state

Fingerprint

Dive into the research topics of 'Sensor-level MEG combined with machine learning yields robust classification of mild traumatic brain injury patients'. Together they form a unique fingerprint.

Cite this