Self-assembled aggregates based on cationic amphiphilic peptides: structural insight

Elisabetta Rosa, Carlo Diaferia, Lucas De Mello, Jani Seitsonen, Ian W. Hamley, Antonella Accardo*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

12 Downloads (Pure)


Short and ultra-short peptides have recently emerged as suitable building blocks for the fabrication of self-assembled innovative materials. Peptide aggregation is strictly related to the amino acids composing the sequence and their capability to establish intermolecular interactions. Additional structural and functional properties can also be achieved by peptide derivatization (e.g. with polymeric moieties, alkyl chains or other organic molecules). For instance, peptide amphiphiles (PAs), containing one or more alkyl tails on the backbone, have a propensity to form highly ordered nanostructures like nanotapes, twisted helices, nanotubes and cylindrical nanostructures. Further lateral interactions among peptides can also promote hydrogelation. Here we report the synthesis and the aggregation behaviour of four PAs containing cationic tetra- or hexa-peptides (C19-VAGK, C19-K1, C19-K2 and C19-K3) derivatized with a nonadecanoic alkyl chain. In their acetylated (Ac-) or fluorenylated (Fmoc-) versions, these peptides previously demonstrated the ability to form biocompatible hydrogels potentially suitable as extracellular matrices for tissue engineering or diagnostic MRI applications. In the micromolar range, PAs self-assemble in aqueous solution into nanotapes, or small clusters, resulting in high biocompatibility on HaCat cells up to 72 hours of incubation. Moreover, C19-VAGK also forms a gel at a concentration of 5 wt%.

Original languageEnglish
Pages (from-to)4686-4696
Number of pages11
JournalSoft Matter
Issue number25
Publication statusPublished - 23 May 2023
MoE publication typeA1 Journal article-refereed


Dive into the research topics of 'Self-assembled aggregates based on cationic amphiphilic peptides: structural insight'. Together they form a unique fingerprint.

Cite this