Selective Laser Melted Digital Hydraulic Valve System

Sergei Chekurov, Tapio Lantela

Research output: Contribution to journalArticleScientificpeer-review

25 Citations (Scopus)
498 Downloads (Pure)

Abstract

The purpose of this article is to investigate the possibility of manufacturing a digital hydraulic valve system using additive manufacturing and to identify the challenges and benefits of doing so. In this study, an existing hydraulic valve manifold, operating at pressures up to 25 MPa, was redesigned for selective laser melting (SLM) and further optimized with computational fluid dynamics. Certain dimensioning challenges were encountered because laser melting is not yet accurate enough for some features, but these challenges were circumvented. The manifold was successfully manufactured from tool steel and tested for maximum operating pressure and flow capacity. Due to the improved flow channels, the selective laser melted manifold provided up to 49% reduction in the energy losses caused by flow resistance. This article demonstrates that SLM can be used to improve the performance of hydraulic valves and that the cost of SLM manifolds is feasible for high-end valve assemblies.
Original languageEnglish
Pages (from-to)215-221
Journal3D Printing and Additive Manufacturing
Volume4
Issue number4
DOIs
Publication statusPublished - 2017
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Selective Laser Melted Digital Hydraulic Valve System'. Together they form a unique fingerprint.
  • DIVA: Digitaaliset varaosat

    Partanen, J. (Principal investigator)

    01/01/201631/12/2017

    Project: Business Finland: Other research funding

Cite this