Abstract

In this paper we propose a novel variable selection method for two-view settings, or for vector-valued supervised learning problems. Our framework is able to handle extremely large scale selection tasks, where number of data samples could be even millions. In a nutshell, our method performs variable selection by iteratively selecting variables that are highly correlated with the output variables, but which are not correlated with the previously chosen variables. To measure the correlation, our method uses the concept of projection operators and their algebra. With the projection operators the relationship, correlation, between sets of input and output variables can also be expressed by kernel functions, thus nonlinear correlation models can be exploited as well. We experimentally validate our approach, showing on both synthetic and real data its scalability and the relevance of the selected features.
Original languageEnglish
JournalMachine Learning
DOIs
Publication statusE-pub ahead of print - 22 Dec 2023
MoE publication typeA1 Journal article-refereed
EventAsian Conference of Machine Learning - Istanbul, Türkiye
Duration: 11 Nov 202314 Nov 2023
Conference number: 15
https://www.acml-conf.org/2023/index.html

Keywords

  • Projection-valued measure
  • Reproducing kernel Hilbert space
  • Supervised variable selection
  • Vector-valued learning

Fingerprint

Dive into the research topics of 'Scalable variable selection for two-view learning tasks with projection operators'. Together they form a unique fingerprint.

Cite this