Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF2 (111) as a reference surface

Adam S. Foster, Clemens Barth, Alexander L. Shluger, Risto M. Nieminen, M. Reichling

Research output: Contribution to journalArticleScientificpeer-review

126 Downloads (Pure)


By combining experimental dynamic scanning force microscope (SFM) images of the CaF2(111) surface with an extensive theoretical modeling, we demonstrate that the two different contrast patterns obtained reproducibly on this surface can be clearly explained in terms of the change of the sign of the electrostatic potential at the tip end. We also present direct theoretical simulations of experimental dynamic SFM images of an ionic surface at different tip-surface distances. Experimental results demonstrate a qualitative transformation of the image pattern, which is fully reproduced by the theoretical modeling and is related to the character of tip-induced displacements of the surface atoms. The modeling of the image transformation upon a systematic reduction of the tip-surface distance with ionic tips allows an estimate of the tip-surface distance present in experiment, where 0.28–0.40 nm is found to be optimal for stable imaging with well-defined atomic contrast. We also compare the modeling with ionic tips to results for a pure silicon tip. This comparison demonstrates that a silicon tip can yield only one type of image contrast and that the tip-surface interaction is not strong enough to explain the image contrast observed experimentally. The proposed interpretation of two types of images for the CaF2(111) surface can also be used to determine the chemical identity of imaged features on other surfaces with similar structure.
Original languageEnglish
Article number235417
Pages (from-to)1-10
Number of pages10
JournalPhysical Review B (Condensed Matter and Materials Physics)
Issue number23
Publication statusPublished - 2002
MoE publication typeA1 Journal article-refereed


  • AFM
  • experiment
  • simulation


Dive into the research topics of 'Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF2 (111) as a reference surface'. Together they form a unique fingerprint.

Cite this