Role of impurity copper in Li-ion battery recycling to LiCoO2 cathode materials

Chao Peng, Katja Lahtinen, Elena Medina, Pertti Kauranen, Maarit Karppinen, Tanja Kallio, Benjamin P. Wilson, Mari Lundström*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

46 Citations (Scopus)
367 Downloads (Pure)

Abstract

Copper is a dominating impurity in Co-rich Li(Co,Ni,Mn)O2 battery waste fractions and may exist in similar quantities (e.g. 6 wt%) as Li, Ni and Mn. This paper investigates the behavior of copper from waste batteries up to recycled active materials and the findings highlight that copper contamination is not necessarily detrimental for the active materials in trace amounts, but can rather increase the discharge capacity at high rates. Firstly, industrially crushed battery waste was treated hydrometallurgically to produce Li2CO3 and CoSO4·2H2O precipitates for re-use, before being calcined to prepare fresh LiCoO2 materials. Results suggest that during the hydrometallurgical recycling process, Cu is likely to co-extract along the Co; in the current work both high and low Cu-contaminated CoSO4·2H2O precipitates were obtained and in the former case, formation of CuO as a secondary phase occurred upon calcination. The presence of Cu contamination induced up to ca. 35 mAh/g decrease in the specific capacity, compared to pure LiCoO2. However, a low level of Cu inclusion was found to be advantageous at high discharge rates (4.0C and 5.0C) resulting in a doubling of the capacity (110–120 mAh/g) when compared with pure LiCoO2 (40–60 mAh/g).

Original languageEnglish
Article number227630
Number of pages8
JournalJournal of Power Sources
Volume450
DOIs
Publication statusPublished - 29 Feb 2020
MoE publication typeA1 Journal article-refereed

Keywords

  • Closed-loop approach
  • Electrochemical performance
  • Hydrometallurgy
  • Positive electrode
  • Waste Li-ion batteries

Fingerprint

Dive into the research topics of 'Role of impurity copper in Li-ion battery recycling to LiCoO2 cathode materials'. Together they form a unique fingerprint.

Cite this