Role of hydroxylation for the atomic structure of a non-polar vicinal zinc oxide

Elin Grånäs*, Michael Busch, Björn Arndt, Marcus Creutzburg, Guliherme Dalla Lana Semione, Johan Gustafson, Andreas Schäfer, Vedran Vonk, Henrik Grönbeck, Andreas Stierle*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

10 Citations (Scopus)

Abstract

From the catalytic, semiconducting, and optical properties of zinc oxide (ZnO) numerous potential applications emerge. For the physical and chemical properties of the surface, under-coordinated atoms often play an important role, necessitating systematic studies of their influence. Here we study the vicinal ZnO(10-14) surface, rich in under-coordinated sites, using a combination of several experimental techniques and density functional theory calculations. We determine the atomic-scale structure and find the surface to be a stable, long-range ordered, non-polar facet of ZnO, with a high step-density and uniform termination. Contrary to an earlier suggested nano-faceting model, a bulk termination fits much better to our experimental observations. The surface is further stabilized by dissociatively adsorbed H2O on adjacent under-coordinated O- and Zn-atoms. The stabilized surface remains highly active for water dissociation through the remaining under-coordinated Zn-sites. Such a vicinal oxide surface is a prerequisite for future adsorption studies with atomically controlled local step and terrace geometry.
Original languageEnglish
Article number7
Number of pages8
JournalCommunications Chemistry
Volume4
Issue number1
DOIs
Publication statusPublished - Dec 2021
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Role of hydroxylation for the atomic structure of a non-polar vicinal zinc oxide'. Together they form a unique fingerprint.

Cite this