Abstract
We consider the problem of fitting variational posterior approximations using
stochastic optimization methods. The performance of these approximations depends on (1) how well the variational family matches the true posterior distribution, (2) the choice of divergence, and (3) the optimization of the variational objective. We show that even in the best-case scenario when the exact posterior belongs to the assumed variational family, common stochastic optimization methods lead to poor variational approximations if the problem dimension is moderately large. We also demonstrate that these methods are not robust across diverse model types. Motivated by these findings, we develop a more robust and accurate stochastic optimization framework by viewing the underlying optimization algorithm as producing a Markov chain. Our approach is theoretically motivated and includes a diagnostic for convergence and a novel stopping rule, both of which are robust to
noisy evaluations of the objective function. We show empirically that the proposed framework works well on a diverse set of models: it can automatically detect stochastic optimization failure or inaccurate variational approximation.
stochastic optimization methods. The performance of these approximations depends on (1) how well the variational family matches the true posterior distribution, (2) the choice of divergence, and (3) the optimization of the variational objective. We show that even in the best-case scenario when the exact posterior belongs to the assumed variational family, common stochastic optimization methods lead to poor variational approximations if the problem dimension is moderately large. We also demonstrate that these methods are not robust across diverse model types. Motivated by these findings, we develop a more robust and accurate stochastic optimization framework by viewing the underlying optimization algorithm as producing a Markov chain. Our approach is theoretically motivated and includes a diagnostic for convergence and a novel stopping rule, both of which are robust to
noisy evaluations of the objective function. We show empirically that the proposed framework works well on a diverse set of models: it can automatically detect stochastic optimization failure or inaccurate variational approximation.
Original language | English |
---|---|
Title of host publication | Thirty-fourth Conference on Neural Information Processing Systems |
Publisher | Morgan Kaufmann Publishers |
Number of pages | 12 |
Publication status | Published - 2020 |
MoE publication type | A4 Article in a conference publication |
Event | Conference on Neural Information Processing Systems - Virtual, Vancouver, Canada Duration: 6 Dec 2020 → 12 Dec 2020 Conference number: 34 |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Publisher | MORGAN KAUFMANN PUBLISHERS |
Volume | 33 |
ISSN (Electronic) | 1049-5258 |
Conference
Conference | Conference on Neural Information Processing Systems |
---|---|
Abbreviated title | NeurIPS |
Country/Territory | Canada |
City | Vancouver |
Period | 06/12/2020 → 12/12/2020 |