Restoration of Ultrasound Images Using Spatially-Variant Kernel Deconvolution

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Researchers

Research units

  • IRAP

Abstract

Most of the existing ultrasound image restoration methods consider a spatially-invariant point-spread function (PSF) model and circulant boundary conditions. While computationally efficient, this model is not realistic and severely limits the quality of reconstructed images. In this work, we address ultrasound image restoration under the hypothesis of piece-wise linear vertical variation of the PSF based on a small number of prototypes. No assumption is made on the structure of the prototype PSFs. To regularize the solution, we use the classical elastic net constraint. Existing methodologies are rendered impractical either due to their reliance on matrix inversion or due to their inability to exploit the strong convexity of the objective. Therefore, we propose an optimization algorithm based on the Accelerated Composite Gradient Method, adapted and optimized for this task. Our method is guaranteed to converge at a linear rate and is able to adaptively estimate unknown problem parameters. We support our theoretical results with simulation examples.

Details

Original languageEnglish
Title of host publication2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
Publication statusPublished - 10 Sep 2018
MoE publication typeA4 Article in a conference publication
EventIEEE International Conference on Acoustics, Speech, and Signal Processing - Calgary, Canada
Duration: 15 Apr 201820 Apr 2018
https://2018.ieeeicassp.org/

Publication series

NameProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
ISSN (Electronic)2379-190X

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
Abbreviated titleICASSP
CountryCanada
CityCalgary
Period15/04/201820/04/2018
Internet address

    Research areas

  • Accelerated Composite Gradient Method, Point-spread function, Reconstruction, Restoration, Spatially varying, Ultrasound

ID: 28749479