Reproducibility in density functional theory calculations of solids

Research output: Contribution to journalArticle

Researchers

  • Kurt Lejaeghere
  • Gustav Bihlmayer
  • Torbjörn Björkman
  • Peter Blaha
  • Stefan Blügel
  • Volker Blum
  • Damien Caliste
  • Ivano E. Castelli
  • Stewart J. Clark
  • Andrea Dal Corso
  • Stefano De Gironcoli
  • Thierry Deutsch
  • John Kay Dewhurst
  • Igor Di Marco
  • Claudia Draxl
  • Marcin Dułak
  • Olle Eriksson
  • José A. Flores-Livas
  • Kevin F. Garrity
  • Luigi Genovese
  • And 49 others
  • Paolo Giannozzi
  • Matteo Giantomassi
  • Stefan Goedecker
  • Xavier Gonze
  • Oscar Grånäs
  • E. K U Gross
  • Andris Gulans
  • François Gygi
  • D. R. Hamann
  • Phil J. Hasnip
  • N. A W Holzwarth
  • Diana Iuşan
  • Dominik B. Jochym
  • François Jollet
  • Daniel Jones
  • Georg Kresse
  • Klaus Koepernik
  • Emine Küçükbenli
  • Yaroslav O. Kvashnin
  • Inka L M Locht
  • Sven Lubeck
  • Martijn Marsman
  • Nicola Marzari
  • Ulrike Nitzsche
  • Lars Nordström
  • Taisuke Ozaki
  • Lorenzo Paulatto
  • Chris J. Pickard
  • Ward Poelmans
  • Matt I J Probert
  • Keith Refson
  • Manuel Richter
  • Gian Marco Rignanese
  • Santanu Saha
  • Matthias Scheffler
  • Martin Schlipf
  • Karlheinz Schwarz
  • Sangeeta Sharma
  • Francesca Tavazza
  • Patrik Thunström
  • Alexandre Tkatchenko
  • Marc Torrent
  • David Vanderbilt
  • Michiel J. Van Setten
  • Veronique Van Speybroeck
  • John M. Wills
  • Jonathan R. Yates
  • Guo Xu Zhang
  • Stefaan Cottenier

Research units

  • Ghent University
  • Vienna University of Technology
  • Duke University
  • Université Grenoble Alpes
  • Durham University
  • Max-Planck-Institut für Mikrostrukturphysik
  • Uppsala University
  • National Institute of Standards and Technology
  • University of Udine
  • University of Basel
  • University of California
  • University of York
  • Wake Forest University
  • University of Oxford
  • University of Vienna
  • Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
  • Technische Universität Dresden
  • Radboud University Nijmegen
  • University of Tokyo
  • University of Cambridge
  • Royal Holloway University of London
  • University of California at Santa Barbara
  • University of Luxembourg
  • Los Alamos National Laboratory
  • Harbin Institute of Technology
  • Jülich Research Centre
  • Jülich Aachen Research Alliance
  • Åbo Akademi University
  • CEA
  • Swiss Federal Institute of Technology Lausanne
  • International School for Advanced Studies
  • Technical University of Denmark
  • Universite Catholique de Louvain
  • Harvard University
  • Humboldt University of Berlin
  • Fritz-Haber-Institut der Max-Planck-Gesellschaft
  • Rutgers University
  • Mat-Sim Research LLC
  • Science & Technology Facilities Council
  • CEA/DAM/DIF
  • UMR 7590
  • Humboldt-Universität zu Berlin

Abstract

The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.

Details

Original languageEnglish
Article numberaad3000
Number of pages9
JournalScience
Volume351
Issue number6280
Publication statusPublished - 25 Mar 2016
MoE publication typeA1 Journal article-refereed

ID: 3042553