Real-space Wigner-Seitz Cells Imaging of Potassium on Graphite via Elastic Atomic Manipulation

Feng Yin, Pekka Koskinen, Sampo Kulju, Jaakko Akola, Richard E. Palmer*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

8 Citations (Scopus)
116 Downloads (Pure)

Abstract

Atomic manipulation in the scanning tunnelling microscopy, conventionally a tool to build nanostructures one atom at a time, is here employed to enable the atomic-scale imaging of a model low-dimensional system. Specifically, we use low-temperature STM to investigate an ultra thin film (4 atomic layers) of potassium created by epitaxial growth on a graphite substrate. The STM images display an unexpected honeycomb feature, which corresponds to a real-space visualization of the Wigner-Seitz cells of the close-packed surface K atoms. Density functional simulations indicate that this behaviour arises from the elastic, tip-induced vertical manipulation of potassium atoms during imaging, i.e. elastic atomic manipulation, and reflects the ultrasoft properties of the surface under strain. The method may be generally applicable to other soft e.g. molecular or biomolecular systems.

Original languageEnglish
Article number8276
Pages (from-to)1-5
JournalScientific Reports
Volume5
DOIs
Publication statusPublished - 5 Feb 2015
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Real-space Wigner-Seitz Cells Imaging of Potassium on Graphite via Elastic Atomic Manipulation'. Together they form a unique fingerprint.

Cite this