Rao-Blackwellized Posterior Linearization Backward SLAM

Ángel F. García-Fernández, Roland Hostettler, Simo Särkkä

Research output: Contribution to journalArticleScientificpeer-review

16 Citations (Scopus)
234 Downloads (Pure)

Abstract

This paper proposes the posterior linearisation backward simultaneous localisation and mapping (PLB-SLAM) algorithm for batch SLAM problems. Based on motion and landmark measurements, we aim to estimate the trajectory of the mobile agent and the landmark positions using an approximate Rao-Blackwellised Monte Carlo solution, as in FastSLAM. PLB-SLAM improves the accuracy of current FastSLAM solutions due to two key aspects: smoothing of the trajectory distribution via backward trajectory simulation and the use of iterated posterior linearisation to obtain Gaussian approximations of the distribution of the landmarks. PLB-SLAM is assessed via numerical simulations and real experiments for indoor localisation and mapping of radio beacons using a smartphone, Bluetooth beacons, and Wi-Fi access points.
Original languageEnglish
Article number8662708
Pages (from-to)4734-4747
Number of pages14
JournalIEEE Transactions on Vehicular Technology
Volume68
Issue number5
Early online date2019
DOIs
Publication statusPublished - 1 May 2019
MoE publication typeA1 Journal article-refereed

Keywords

  • Simultaneous localisation and mapping
  • Back-ward simulation
  • Posterior linearisation
  • Rao-Blackwellisation
  • Bluetooth beacons
  • Wi-Fi access points
  • Smartphone
  • Rao-Blackwellization
  • Backward simulation
  • Simultaneous localization and mapping
  • Posterior linearization

Fingerprint

Dive into the research topics of 'Rao-Blackwellized Posterior Linearization Backward SLAM'. Together they form a unique fingerprint.

Cite this