Quantum Simulation of Dissipative Collective Effects on Noisy Quantum Computers

Marco Cattaneo, Matteo A.C. Rossi, Guillermo García-Pérez, Roberta Zambrini, Sabrina Maniscalco

Research output: Contribution to journalArticleScientificpeer-review

18 Citations (Scopus)
84 Downloads (Pure)

Abstract

Dissipative collective effects are ubiquitous in quantum physics and their relevance ranges from the study of entanglement in biological systems to noise mitigation in quantum computers. Here, we put forward the first fully quantum simulation of dissipative collective phenomena on a real quantum computer, based on the recently introduced multipartite-collision model. First, we theoretically study the accuracy of this algorithm on near-term quantum computers with noisy gates and we derive some rigorous error bounds that depend on the time step of the collision model and on the gate errors. These bounds can be employed to estimate the necessary resources for the efficient quantum simulation of the collective dynamics. Then, we implement the algorithm on some IBM quantum computers to simulate superradiance and subradiance between a pair of qubits. Our experimental results successfully display the emergence of collective effects in the quantum simulation. In addition, we analyze the noise properties of the gates that we employ in the algorithm by means of full process tomography, with the aim of improving our understanding of the errors in the near-term devices that are currently accessible to worldwide researchers. We obtain the values of the average gate fidelity, unitarity, incoherence, and diamond error and we establish a connection between them and the accuracy of the experimentally simulated state. Moreover, we build a noise model based on the results of the process tomography for two-qubit gates and show that its performance is comparable with the noise model provided by IBM. Finally, we observe that the scaling of the error as a function of the number of gates is favorable, but at the same time reaching the threshold of the diamond errors for quantum fault-tolerant computation may still be orders of magnitude away in the devices that we employ.

Original languageEnglish
Article number010324
Pages (from-to)1-31
Number of pages31
JournalPRX Quantum
Volume4
Issue number1
DOIs
Publication statusPublished - 8 Mar 2023
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Quantum Simulation of Dissipative Collective Effects on Noisy Quantum Computers'. Together they form a unique fingerprint.

Cite this