Abstract
Despite the enormous interest in the properties of graphene and the potential of graphene nanostructures in electronic applications, the study of quantum-confined states in atomically well-defined graphene nanostructures remains an experimental challenge. Here, we study graphene quantum dots (GQDs) with well-defined edges in the zigzag direction, grown by chemical vapor deposition on an Ir(111) substrate by low-temperature scanning tunneling microscopy and spectroscopy. We measure the atomic structure and local density of states of individual GQDs as a function of their size and shape in the range from a couple of nanometers up to ca. 20 nm. The results can be quantitatively modeled by a relativistic wave equation and atomistic tight-binding calculations. The observed states are analogous to the solutions of the textbook “particle-in-a-box” problem applied to relativistic massless fermions.
Original language | English |
---|---|
Article number | 236803 |
Pages (from-to) | 1-5 |
Journal | Physical Review Letters |
Volume | 107 |
Issue number | 23 |
DOIs | |
Publication status | Published - 2011 |
MoE publication type | A1 Journal article-refereed |
Keywords
- graphene
- quantum dot
- scanning tunneling microscopy