TY - JOUR
T1 - Quantitative real-time PCR monitoring dynamics of Thermotoga neapolitana in synthetic co-culture for biohydrogen production
AU - Okonkwo, Onyinye
AU - Lakaniemi, Aino Maija
AU - Santala, Ville
AU - Karp, Matti
AU - Mangayil, Rahul
N1 - Funding Information:
This work was supported by the Marie Skłodowska-Curie European Joint Doctorate (EJD) in Advanced Biological Waste-To-Energy Technologies (ABWET) funded from Horizon 2020 under grant agreement no. 643071 .
Funding Information:
This work was supported by the Marie Skłodowska-Curie European Joint Doctorate (EJD) in Advanced Biological Waste-To-Energy Technologies (ABWET) funded from Horizon 2020 under grant agreement no. 643071.
Publisher Copyright:
© 2017 Hydrogen Energy Publications LLC
PY - 2018/2/8
Y1 - 2018/2/8
N2 - This study demonstrates the potential for biohydrogen production in a co-culture of two ecologically distant species, Thermatoga neapolitana and Caldicellulosiruptor saccharolyticus, and the development of a quantitative real-time PCR (qPCR) method for quantifying the hyperthermophilic bacterium of the genus Thermotoga. Substrate utilization and H2 production performance was compared to those of their individual cultures. The highest H2 yields obtained were 2.7 ± 0.05, 2.5 ± 0.07 and 2.8 ± 0.09 mol H2/mol glucose for C. saccharolyticus, T. neapolitana, and their co-culture respectively. Statistical analysis comparing the H2 production rate of the co-culture to either C. saccahrolyticus or T. neapolitana pure cultures indicated a significant difference in the H2 production rate (p < 0.05: t-test), with the highest rate of H2 production (36.02 mL L−1 h−1) observed from the co-culture fermentations. In order to monitor the presence of T. neapolitana in the bioprocess, we developed a qPCR method using 16S rRNA gene and hydrogenase (hydA) gene targets. The qPCR data using hydA primers specific to T. neapolitana showed an increase in hydA gene copies from 3.32 × 107 to 4.4 × 108 hydA gene copies per mL confirming the influence of T. neapolitana in the synthetic consortium.
AB - This study demonstrates the potential for biohydrogen production in a co-culture of two ecologically distant species, Thermatoga neapolitana and Caldicellulosiruptor saccharolyticus, and the development of a quantitative real-time PCR (qPCR) method for quantifying the hyperthermophilic bacterium of the genus Thermotoga. Substrate utilization and H2 production performance was compared to those of their individual cultures. The highest H2 yields obtained were 2.7 ± 0.05, 2.5 ± 0.07 and 2.8 ± 0.09 mol H2/mol glucose for C. saccharolyticus, T. neapolitana, and their co-culture respectively. Statistical analysis comparing the H2 production rate of the co-culture to either C. saccahrolyticus or T. neapolitana pure cultures indicated a significant difference in the H2 production rate (p < 0.05: t-test), with the highest rate of H2 production (36.02 mL L−1 h−1) observed from the co-culture fermentations. In order to monitor the presence of T. neapolitana in the bioprocess, we developed a qPCR method using 16S rRNA gene and hydrogenase (hydA) gene targets. The qPCR data using hydA primers specific to T. neapolitana showed an increase in hydA gene copies from 3.32 × 107 to 4.4 × 108 hydA gene copies per mL confirming the influence of T. neapolitana in the synthetic consortium.
KW - 16S rRNA gene
KW - hydA
KW - Hydrogen production
KW - Primer design
KW - Real-time quantitative polymerase chain reaction
KW - Thermotoga neapolitana
UR - http://www.scopus.com/inward/record.url?scp=85041384509&partnerID=8YFLogxK
U2 - 10.1016/j.ijhydene.2017.12.002
DO - 10.1016/j.ijhydene.2017.12.002
M3 - Article
AN - SCOPUS:85041384509
SN - 0360-3199
VL - 43
SP - 3133
EP - 3141
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
IS - 6
ER -