Quantitative application of Monte Carlo simulation in Fire-PSA

O. Keski-Rahkonen*, J. Mangs, S. Hostikka, Timo Korhonen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)

Abstract

In a power plant a fire cell forms the basic subunit. Since the fire is initially located there, the full-scale time dependent fire simulation and estimation of target response must be performed within the fire cell. Conditional, time dependent damage probabilities in a fire cell can now be calculated for arbitrary targets (component or a subsystem) combining probabilistic (Monte Carlo) and deterministic simulation. For the latter a spectrum from simple correlations up to latest computational fluid dynamics models is available. Selection of the code is made according to the requirements from the target cell. Although calculations are numerically heavy, it is now economically possible and feasible to carry out quantitative fire-PSA for a complete plant iteratively with the main PSA. From real applications examples are shown on assessment of fire spread possibility in a relay room, and potential of fire spread on cables in a tunnel.

Original languageEnglish
Pages (from-to)149-155
Number of pages7
JournalKERNTECHNIK
Volume72
Issue number3
DOIs
Publication statusPublished - May 2007
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Quantitative application of Monte Carlo simulation in Fire-PSA'. Together they form a unique fingerprint.

Cite this