py_ciu_image : A Python Library for Explaining Image Classification with Contextual Importance and Utility

Kary Främling*, Ioan Vlad Apopei, Gustav Grund Pihlgren, Avleen Malhi

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingsScientificpeer-review

Abstract

Contextual Importance and Utility (CIU) is a model-agnostic method for explaining outcomes of AI systems. CIU has succeeded in producing meaningful explanations where state-of-the-art methods fail, e.g. for detecting bleeding in gastroenterological images. This paper presents a Python implementation of CIU for explaining image classifications.

Original languageEnglish
Title of host publicationExplainable and Transparent AI and Multi-Agent Systems - 6th International Workshop, EXTRAAMAS 2024, Revised Selected Papers
EditorsDavide Calvaresi, Amro Najjar, Andrea Omicini, Rachele Carli, Giovanni Ciatto, Reyhan Aydogan, Joris Hulstijn, Kary Främling
Place of PublicationCham
PublisherSpringer
Pages184-188
Number of pages5
ISBN (Electronic)978-3-031-70074-3
ISBN (Print)978-3-031-70073-6
DOIs
Publication statusPublished - 2024
MoE publication typeA4 Conference publication
EventInternational Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems - Auckland, New Zealand
Duration: 6 May 202410 May 2024
Conference number: 6

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
PublisherSpringer
Volume14847 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Workshop

WorkshopInternational Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems
Abbreviated titleEXTRAAMAS
Country/TerritoryNew Zealand
CityAuckland
Period06/05/202410/05/2024

Keywords

  • Contextual Importance and Utility
  • Deep Neural Network
  • Explainable Artificial Intelligence
  • Image Classification

Fingerprint

Dive into the research topics of 'py_ciu_image : A Python Library for Explaining Image Classification with Contextual Importance and Utility'. Together they form a unique fingerprint.

Cite this