Efficient finite element method to estimate eddy current loss due to random interlaminar contacts in electrical sheets

Research output: Scientific - peer-reviewArticle

Details

Original languageEnglish
Number of pages8
JournalINTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS DEVICES AND FIELDS
Early online date24 May 2017
StateE-pub ahead of print - 24 May 2017
MoE publication typeA1 Journal article-refereed

Researchers

Research units

  • Tampere University of Technology

Abstract

Electrical sheets of electrical machines are laminated to reduce eddy current loss. However, a series of punching and pressing processes form random galvanic contacts at the edges of the sheets. These galvanic contacts are random in nature and cause an additional eddy current loss in the laminated cores. In this paper, a stochastic Galerkin finite element method is implemented to consider random interlaminar contacts in the magnetic vector potential formulation. The random interlaminar conductivities at the edges of the electrical sheets are approximated using a conductivity field and propagated through the finite element formulation. The spatial random variation of the conductivity causes the solution to be random, and hence, it is approximated by using a polynomial chaos expansion method. Finally, the additional eddy current losses due to the interlaminar contacts are estimated from a stochastic Galerkin method and compared with a Monte Carlo method. Accuracy and computation time of both models are discussed in the paper.

    Research areas

  • Eddy current, Finite element analysis, Monte Carlo method, Polynomial chaos expansion, Random field, Uncertainty quantification

ID: 14052756