How fast can iterative methods be?

Research output: Chapter in Book/Report/Conference proceedingChapterScientificpeer-review

Standard

How fast can iterative methods be? / Nevanlinna, Olavi.

IMA volumes in mathematics and its applications. ed. / A.Greenbaum G.Golub. Berlin, 1993.

Research output: Chapter in Book/Report/Conference proceedingChapterScientificpeer-review

Harvard

Nevanlinna, O 1993, How fast can iterative methods be? in AG G.Golub (ed.), IMA volumes in mathematics and its applications. Berlin.

APA

Nevanlinna, O. (1993). How fast can iterative methods be? In A. G. G.Golub (Ed.), IMA volumes in mathematics and its applications Berlin.

Vancouver

Nevanlinna O. How fast can iterative methods be? In G.Golub AG, editor, IMA volumes in mathematics and its applications. Berlin. 1993

Author

Nevanlinna, Olavi. / How fast can iterative methods be?. IMA volumes in mathematics and its applications. editor / A.Greenbaum G.Golub. Berlin, 1993.

Bibtex - Download

@inbook{79e1a18d52654a4485c8eb8affadbc52,
title = "How fast can iterative methods be?",
keywords = "convergence, iterative methods, sparse systems, convergence, iterative methods, sparse systems, convergence, iterative methods, sparse systems",
author = "Olavi Nevanlinna",
year = "1993",
language = "English",
editor = "A.Greenbaum G.Golub",
booktitle = "IMA volumes in mathematics and its applications",

}

RIS - Download

TY - CHAP

T1 - How fast can iterative methods be?

AU - Nevanlinna, Olavi

PY - 1993

Y1 - 1993

KW - convergence

KW - iterative methods

KW - sparse systems

KW - convergence

KW - iterative methods

KW - sparse systems

KW - convergence

KW - iterative methods

KW - sparse systems

M3 - Chapter

BT - IMA volumes in mathematics and its applications

A2 - G.Golub, A.Greenbaum

CY - Berlin

ER -

ID: 5022323