Abstract

Temporal graph networks (TGNs) have gained prominence as models for embedding dynamic interactions, but little is known about their theoretical underpinnings. We establish fundamental results about the representational power and limits of the two main categories of TGNs: those that aggregate temporal walks (WA-TGNs), and those that augment local message passing with recurrent memory modules (MP-TGNs). Specifically, novel constructions reveal the inadequacy of MP-TGNs and WA-TGNs, proving that neither category subsumes the other. We extend the 1-WL (Weisfeiler-Leman) test to temporal graphs, and show that the most powerful MP-TGNs should use injective updates, as in this case they become as expressive as the temporal WL. Also, we show that sufficiently deep MP-TGNs cannot benefit from memory, and MP/WA-TGNs fail to compute graph properties such as girth. These theoretical insights lead us to PINT --- a novel architecture that leverages injective temporal message passing and relative positional features. Importantly, PINT is provably more expressive than both MP-TGNs and WA-TGNs. PINT significantly outperforms existing TGNs on several real-world benchmarks.
Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 35 (NeurIPS 2022)
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherMorgan Kaufmann Publishers
Number of pages13
ISBN (Print)978-1-7138-7108-8
Publication statusPublished - 2022
MoE publication typeA4 Conference publication
EventConference on Neural Information Processing Systems - New Orleans, United States
Duration: 28 Nov 20229 Dec 2022
Conference number: 36
https://nips.cc/

Publication series

NameAdvances in Neural Information Processing Systems
PublisherMorgan Kaufmann Publishers
Volume35
ISSN (Print)1049-5258

Conference

ConferenceConference on Neural Information Processing Systems
Abbreviated titleNeurIPS
Country/TerritoryUnited States
CityNew Orleans
Period28/11/202209/12/2022
Internet address

Fingerprint

Dive into the research topics of 'Provably expressive temporal graph networks'. Together they form a unique fingerprint.

Cite this