Probabilistic simulation of cable performance and water based protection in cable tunnel fires

Anna Matala*, Simo Hostikka

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

22 Citations (Scopus)

Abstract

Nuclear power plants contain a significant amount of fire load in form of electrical cables. The performance of the cables is interesting both from the fire development and system failure viewpoints. In this work, cable tunnel fires are studied using numerical simulations, focusing on the fire spreading along power cables and the efficiency of the water suppression in preventing the cable failures. Probabilistic simulations are performed using Monte Carlo technique and the Fire Dynamics Simulator (FDS) as the deterministic fire model. The primary fire load, i.e. the power cables are modelled using the one-dimensional pyrolysis model, for which the material parameters are estimated from the experimental data. Two different water suppression systems are studied. The simulation results indicate that using either suppression system decreased the heat release rate in the tunnel to less than 10% of the non-suppressed case. Without water suppression, the cables of the second sub-system were damaged in almost all fires, but when either of the studied water suppression systems was used, the probability of the cable failures was decreased to less than 1%. This result indicates that in current scenario, the probability of losing both sub-systems is determined directly by the suppression system unavailability. (C) 2011 Elsevier B.V. All rights reserved.

Original languageEnglish
Pages (from-to)5263-5274
Number of pages12
JournalNuclear Engineering and Design
Volume241
Issue number12
DOIs
Publication statusPublished - Dec 2011
MoE publication typeA1 Journal article-refereed
EventInternational Conference on Nuclear Engineering - Xian, China
Duration: 17 May 201021 May 2010
Conference number: 18

Cite this