Probabilistic fingerprinting based passive device-free localization from channel state information

Shuyu Shi, Stephan Sigg, Yusheng Ji

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

21 Citations (Scopus)

Abstract

Given the ubiquitous distribution of electronic de- vices equipped with a radio frequency (RF) interface, researchers have shown great interest in analyzing signal fluctuation on this interface for environmental perception. A popular example is the enabling of indoor localization with RF signals. As an alternative to active device-based positioning, device-free passive (DfP) indoor localization has the advantage that the sensed individuals do not require to carry RF sensors. We propose a probabilistic fingerprinting-based technique for DfP indoor localization. Our system adopts CSI readings derived from off-the-shelf WiFi 802.11n wireless cards which can provide fine-grained subchannel measurements in the context of MIMO- OFDM PHY layer parameters. This complex channel informa- tion enables accurate localization of non-equipped individuals. Our scheme further boosts the localization efficiency by using principal component analysis (PCA) to identify the most relevant feature vectors. The experimental results demonstrate that our system can achieve an accuracy of over 92% and an error distance smaller than 0.5m. We also investigate the effect of other parameters on the performance of our system, including packet transmission rate, the number of links as well as the number of principle components.

Original languageEnglish
Title of host publication2016 IEEE 83rd Vehicular Technology Conference, VTC Spring 2016 - Proceedings
PublisherIEEE
Number of pages5
Volume2016-July
ISBN (Electronic)9781509016983
DOIs
Publication statusPublished - 5 Jul 2016
MoE publication typeA4 Article in a conference publication
EventIEEE Vehicular Technology Conference - Nanjing, China
Duration: 15 May 201618 May 2016
Conference number: 83

Conference

ConferenceIEEE Vehicular Technology Conference
Abbreviated titleVTC Spring
Country/TerritoryChina
CityNanjing
Period15/05/201618/05/2016

Fingerprint

Dive into the research topics of 'Probabilistic fingerprinting based passive device-free localization from channel state information'. Together they form a unique fingerprint.

Cite this