Projects per year
Abstract
Preference learning methods make use of models of human choice in order to infer the latent utilities that underlie human behaviour. However, accurate modeling of human choice behavior is challenging due to a range of context effects that arise from how humans contrast and evaluate options. Cognitive science has proposed several models that capture these intricacies but, due to their intractable nature, work on preference learning has, in practice, had to rely on tractable but simplified variants of the well-known Bradley-Terry model. In this paper, we take one state-of-the-art intractable cognitive model and propose a tractable surrogate that is suitable for deployment in preference learning. We then introduce a mechanism for fitting the surrogate to human data that cannot be explained by the original cognitive model. We demonstrate on large-scale human data that this model produces significantly better inferences on static and actively elicited data than existing Bradley-Terry variants. We further show in simulation that when using this model for preference learning, we can significantly improve a utility in a range of real-world tasks.
Original language | English |
---|---|
Title of host publication | Advances in Neural Information Processing Systems 37 (NeurIPS 2024) |
Editors | A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, C. Zhang |
Publisher | Curran Associates Inc. |
ISBN (Print) | 9798331314385 |
Publication status | Published - 2025 |
MoE publication type | A4 Conference publication |
Event | Conference on Neural Information Processing Systems - Vancouver, Canada, Vancouver , Canada Duration: 10 Dec 2024 → 15 Dec 2024 Conference number: 38 https://neurips.cc/Conferences/2024 |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Publisher | Curran Associates, Inc. |
Volume | 37 |
ISSN (Print) | 1049-5258 |
Conference
Conference | Conference on Neural Information Processing Systems |
---|---|
Abbreviated title | NeurIPS |
Country/Territory | Canada |
City | Vancouver |
Period | 10/12/2024 → 15/12/2024 |
Internet address |
Fingerprint
Dive into the research topics of 'Preference Learning of Latent Decision Utilities with a Human-like Model of Preferential Choice'. Together they form a unique fingerprint.-
RAICU: Real-time AI-assistance with computationally rational user models
Kaski, S. (Principal investigator)
01/01/2024 → 31/12/2026
Project: Academy of Finland: Other research funding
-
HEALED/Kaski S.: Human-steered next-generation machine learning for reviving drug design (HEALED)
Kaski, S. (Principal investigator)
01/09/2021 → 31/08/2025
Project: Academy of Finland: Other research funding
-
MAMAA /Kaski S.: Maximally Autonomous AI Assistant/Kaski S.
Kaski, S. (Principal investigator)
01/01/2022 → 31/12/2024
Project: Academy of Finland: Other research funding