Abstract
Colloidal stability of negatively charged nanodiamonds (ND) has been realized with the help of double hydrophilic block copolymers poly(ethylene oxide)-block-poly(dimethylaminoethyl methacrylate)-dodecyl (PEO-b-PDMAEMA-C12). The polymers were synthesized through RAFT polymerization of DMAEMA with a PEO macromonomer carrying trithiocarbonate and dodecyl end-groups. The NDs and the polymers were complexed by mixing them in different ratios. In addition to the amount of polymers, the effect of the detailed structure of the polymer was of interest and thus, also polymers with different lengths of the PEO-block were synthesized, as well as a block copolymer without the dodecyl end-group. The composition of the polymer, as well as the complexation conditions were varied to find the route to stable nanoparticles. The optimized complexation method gave colloidally stable ND particles with positively charged PDMAEMA coronas. The colloids were stable at room temperature and also in saline solutions up to 0.154 M NaCl.
Original language | English |
---|---|
Pages (from-to) | 185-194 |
Number of pages | 10 |
Journal | Diamond and Related Materials |
Volume | 95 |
DOIs | |
Publication status | Published - 1 May 2019 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Colloidal stability
- Nanodiamond
- Polyelectrolyte complex
- Zeta potential