Plasmonic cellulose textile fiber from waste paper for BPA sensing by SERS
Research output: Contribution to journal › Article › Scientific › peer-review
Researchers
Research units
- Liaoning University of Petroleum and Chemical Technology
- Oregon State University
Abstract
Flexible plasmonic Surface-enhanced Raman scattering (SERS) substrates were fabricated using cellulose textile fibers, in which the textile fibers were recycled from waste paper in an eco-friendly way. The Glycidyltrimethylammonium chloride (GTAC) with positive charges was grafted onto the surface of the cellulose textile fibers through cationization. Plasmonic silver nanoparticles (Ag NPs) with negative charges were decorated onto the cellulose textile fibers via electrostatic interactions. After cationization, the variation range of the diameter of the cellulose textile fibers was significantly increased because part of the cellulose was dissolved under alkaline condition, leading to more ‘hot spots’ for SERS during the shrinking process. The cellulose textile fiber-Ag NPs nanocomposite was employed for monitoring bisphenol A (BPA) in water and soft drink by SERS and the sensitivity of BPA detection achieved 50 ppb. The recovery values of BPA in soda water samples were from 96% to 105%. These results illustrate that the cellulose textile fiber-Ag NPs nanocomposite can be used as flexible, high sensitivity SERS substrates for detecting harmful ingredients in food or environment.
Details
Original language | English |
---|---|
Article number | 117664 |
Journal | Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
Volume | 227 |
Publication status | Published - 15 Feb 2020 |
MoE publication type | A1 Journal article-refereed |
- BPA, Cellulose textile fiber, Flexible sensor, Plasmonic NPs, SERS
Research areas
ID: 38288038